OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 6 — Jun. 1, 2010
  • pp: 1184–1194

Stability of mode-locked pulse solutions subject to saturable gain: computing linear stability with the Floquet–Fourier–Hill method

Christopher R. Jones and J. Nathan Kutz  »View Author Affiliations


JOSA B, Vol. 27, Issue 6, pp. 1184-1194 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001184


View Full Text Article

Enhanced HTML    Acrobat PDF (322 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The stability of local structures in optical systems is of great importance. We demonstrate that using the Floquet–Fourier–Hill (FFH) method provides a substantial improvement in both speed and accuracy over finite-difference methods that are commonly used. Furthermore, we show how to incorporate the effect of nonlocal saturable gain in the linearization and stability predictions. Several examples of problems are worked with both the FFH and finite-difference methods and compared in the context of mode-locked laser models.

© 2010 Optical Society of America

OCIS Codes
(140.3500) Lasers and laser optics : Lasers, erbium
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 8, 2010
Revised Manuscript: March 29, 2010
Manuscript Accepted: March 30, 2010
Published: May 11, 2010

Citation
Christopher R. Jones and J. Nathan Kutz, "Stability of mode-locked pulse solutions subject to saturable gain: computing linear stability with the Floquet–Fourier–Hill method," J. Opt. Soc. Am. B 27, 1184-1194 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-6-1184


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. G. Drazin and W. H. Reid, Hydrodynamic Stability (Cambridge Univ. Press, 1981).
  2. J. D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications (Springer-Verlag, 2003).
  3. A. Hasegawa, Optical Solitons in Fibers, 2nd ed. (Springer-Verlag, 1990).
  4. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Plenum, 1984).
  5. J. N. Kutz, “Mode-locked soliton lasers,” SIAM Rev. 48, 629–678 (2006). [CrossRef]
  6. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000). [CrossRef]
  7. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991). [CrossRef]
  8. S. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, “Energy rate equations for mode-locked lasers,” J. Opt. Soc. Am. B 14, 2099–2111 (1997). [CrossRef]
  9. T. Kapitula, J. N. Kutz, and B. Sandstede, “Stability of pulses in the master-mode-locking equation,” J. Opt. Soc. Am. B 19, 740–746 (2002). [CrossRef]
  10. T. Kapitula, J. N. Kutz, and B. Sandstede, “The Evans function for nonlocal equations,” Indiana Univ. Math. J. 53, 1095–1126 (2004). [CrossRef]
  11. B. Deconinck and J. N. Kutz, “Computing spectra of linear operators using the Floquet–Fourier–Hill method,” J. Comput. Phys. 219, 296–321 (2006). [CrossRef]
  12. B. Deconinck, F. Kiyak, J. Carter, and J. N. Kutz, “SpectrUW: a laboratory for the numerical exploration of spectra of linear operators,” Math. Comput. Simul. 74, 370–378 (2007). [CrossRef]
  13. G. W. Hill, “On the part of the lunar perigee which is a function of the mean motions of the sun and the moon,” Acta Math. 8, 1–36 (1886). [CrossRef]
  14. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  15. B. Fornberg, A Practical Guide to Pseudospectral Methods (Cambridge Univ. Press, 1998).
  16. L. N. Trefethen, Spectral Methods in Matlab (SIAM, 2000). [CrossRef]
  17. G. Floquet, “Sur les équations différentielles linéaires à coefficients périodiques,” Ann. Sci. Ec. Normale Super. 2, 47–89 (1883).
  18. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, 1955).
  19. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College Publishing, 1976).
  20. E. Farnum and J. N. Kutz, “Multi-frequency mode-locked lasers,” J. Opt. Soc. Am. B 25, 1002–1010 (2008). [CrossRef]
  21. B. Bale, E. Farnum, and J. N. Kutz, “Theory and simulation of passive multifrequency mode-locking with waveguide arrays,” IEEE J. Quantum Electron. 44, 976–983 (2008). [CrossRef]
  22. J. N. Kutz, “Passive mode-locking using phase-sensitive amplification,” Phys. Rev. A 78, 013845 (2008). [CrossRef]
  23. B. Bale, E. Farnum, and J. N. Kutz, “Dynamics of multifrequency mode-locking driven by homogenous and inhomogenous gain broadening effects,” J. Opt. Soc. Am. B 25, 1479–1487 (2008). [CrossRef]
  24. N. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman and Hall, 1997).
  25. J. Proctor and J. N. Kutz, “Passive mode-locking by use of waveguide arrays,” Opt. Lett. 30, 2013–2015 (2005). [CrossRef] [PubMed]
  26. J. N. Kutz and B. Sandstede, “Theory of passive harmonic mode-locking using waveguide arrays,” Opt. Express 16, 636–650 (2008). [CrossRef] [PubMed]
  27. B. Bale, J. N. Kutz, and B. Sandstede, “Optimizing waveguide array mode-locking for high-power fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 220–231 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited