OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 6 — Jun. 1, 2010
  • pp: 1208–1214

Precise frequency measurements of I 127 2 lines in the wavelength region 750–780 nm

Chun-Chieh Liao, Kuo-Yu Wu, Yu-Hung Lien, Horst Knöckel, Hsiang-Chen Chui, Eberhard Tiemann, and Jow-Tsong Shy  »View Author Affiliations


JOSA B, Vol. 27, Issue 6, pp. 1208-1214 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001208


View Full Text Article

Enhanced HTML    Acrobat PDF (325 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High precision frequency measurements of I 127 2 hyperfine transitions in the wavelength range between 750 and 780 nm were performed employing an optical frequency comb. A Ti:sapphire laser is frequency stabilized to a hyperfine component of I 2 using a Doppler-free frequency modulation technique, and an optical frequency comb is used to measure its frequency precisely. Improved absolute frequencies of 27 hyperfine transitions between 750 and 780 nm of the bands (0–12) and (0–13) of B Π 3 0 u + X Σ 1 g + system of I 2 are presented. The relative uncertainty of the measurement is a few times 10 10 , limited by the frequency instability of the iodine-stabilized laser. The frequencies are compared to the predicted frequencies using the model description of [ Eur. Phys. J. D 28, 199 (2004) ], which yields differences larger than expected. An improved model is developed for the range from 755 to 815 nm for the prediction of lines with an error limit of the absolute frequency less than 0.2 MHz.

© 2010 Optical Society of America

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(300.6460) Spectroscopy : Spectroscopy, saturation
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: December 3, 2009
Revised Manuscript: March 19, 2010
Manuscript Accepted: March 22, 2010
Published: May 12, 2010

Citation
Chun-Chieh Liao, Kuo-Yu Wu, Yu-Hung Lien, Horst Knöckel, Hsiang-Chen Chui, Eberhard Tiemann, and Jow-Tsong Shy, "Precise frequency measurements of 127I2 lines in the wavelength region 750–780 nm," J. Opt. Soc. Am. B 27, 1208-1214 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-6-1208


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. S. Edwards, G. P. Barwood, P. Gill, F. Rodríguez-Llorente, and W. R. C. Rowley, “Frequency-stabilised diode lasers in the visible region using Doppler-free iodine spectra,” Opt. Commun. 132, 94–100 (1996). [CrossRef]
  2. R. Grieser, G. Bönsch, S. Dickopf, G. Huber, R. Klein, P. Merz, A. Nicolaus, and H. Schnatz, “Precision measurement of two iodine lines at 585 nm and 549 nm,” Z. Phys. A: Hadrons Nucl. 348, 147–150 (1994). [CrossRef]
  3. M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155–158 (1995). [CrossRef]
  4. W.-Y. Cheng and J.-T. Shy, “Wavelength standard at 543 nm and the corresponding I1272 hyperfine transitions,” J. Opt. Soc. Am. B 18, 363–369 (2001). [CrossRef]
  5. W.-Y. Cheng, L. Chen, T. H. Yoon, J. L. Hall, and J. Ye, “Sub-Doppler molecular-iodine transitions near the dissociation limit (523–498 nm),” Opt. Lett. 27, 571–573 (2002). [CrossRef]
  6. T. J. Quinn, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2001),” Metrologia 40, 103–133 (2003). [CrossRef]
  7. R. Felder, “Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003),” Metrologia 42, 323–325 (2005). [CrossRef]
  8. S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule d’iode 14800–20000 cm−1 (Laboratoire Aimé Cotton CNRS II, 1978). [PubMed]
  9. S. Gerstenkorn, J. Verges, and J. Chevillard, Atlas du spectre d’absorption de la molécule d’iode 11.000 cm−1–14.000 cm−1 (Laboratoire Aimé Cotton CNRS II, 1982).
  10. S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule d’iode 19700 cm−1–20035 cm−1 (Laboratoire Aimé Cotton CNRS II, 1983).
  11. S. Gerstenkorn and P. Luc, Atlas du spectre d’absorption de la molécule d’iode 14800–20000 cm−1 Complément: Identification des transitions du systéme (B−X) assignments of the (B(I2))−X iodine lines (Laboratoire Aimé Cotton CNRS II, 1986). [PubMed]
  12. S. Gerstenkorn, P. Luc, and J. Verges, Atlas du spectre d’absorption de la molécule d’iode 7220 cm−1–11200 cm−1 (Laboratoire Aimé Cotton CNRS II, 1993).
  13. H. Kato, M. Baba, S. Kasahara, K. Ishikawa, M. Misono, Y. Kimura, J. O’Reilly, H. Kuwano, T. Shimamoto, T. Shinano, C. Fujiwara, M. Ikeuchi, N. Fujita, M. H. Kabir, M. Ushino, R. Takahashi, and Y. Matsunobu, Doppler-Free High Resolution Spectral Atlas of Iodine Molecule 15,000 to 19,000 cm−1 (Japan Society for the Promotion of Science, 2000). [PubMed]
  14. IodineSpec 4 program for calculation of iodine spectra. For the actual status of the program please contact knoeckel@iqo.uni-hannover.de.
  15. E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “The hyperfine sturcture of I1292 and I127 I129 in the B Π30u+–X Σ1g+ band system,” Mol. Phys. 104, 2641–2652 (2006). [CrossRef]
  16. H. Knöckel, B. Bodermann, and E. Tiemann, “High precision description of the rovibronic structure of the I2B−X spectrum,” Eur. Phys. J. D 28, 199–209 (2004). [CrossRef]
  17. E. J. Salumbides, K. S. E. Eikema, W. Ubachs, U. Hollenstein, H. Knöckel, and E. Tiemann, “Improved potentials and Born–Oppenheimer corrections by new measurements of transitions of I2129 and I127 I129 in the B Π3Ou+–X Σ1g+ band system,” Eur. Phys. J. D 47, 171–179 (2008). [CrossRef]
  18. G. C. Bjorklund and M. D. Levenson, “Sub-Doppler frequency-modulation spectroscopy of I2,” Phys. Rev. A 24, 166–169 (1981). [CrossRef]
  19. J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, “Optical heterodyne saturation spectroscopy,” Appl. Phys. Lett. 39, 680–682 (1981). [CrossRef]
  20. L. J. Gillespie and L. H. D. Fraser, “The normal vapor pressure of crystalline iodine,” J. Am. Chem. Soc. 58, 2260–2263 (1936). [CrossRef]
  21. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327–332 (1999). [CrossRef]
  22. W. R. C. Rowley and B. R. Marx, “Verification of iodine cells for stabilized lasers using the Hanle effect,” Metrologia 17, 65–66 (1981). [CrossRef]
  23. F. Spieweck, “Influence of small impurities in absorption cells of I2 stabilized lasers upon their frequency,” IEEE Trans. Instrum. Meas. 34, 246–248 (1985). [CrossRef]
  24. P. Gill and R. C. Thompson, “The preparation and analysis of iodine cells,” Metrologia 23, 161–166 (1987). [CrossRef]
  25. S. Fredin-Picard, “A study of contamination in I2127 cells using laser-induced fluorescence,” Metrologia 26, 235–244 (1989). [CrossRef]
  26. J.-M. Chartier, S. Picard-Fredin, and A. Chartier, “International comparison of iodine cells,” Metrologia 29, 361–367 (1992). [CrossRef]
  27. A. M. Negriyko, O. V. Boyko, N. M. Kachalova, and V. M. Khodakovskii, “Effect of the I129 impurity on the radiation frequency of a stabilised He–Ne/I1272 laser,” Quantum Electron. 34, 482–486 (2004). [CrossRef]
  28. J. Lazar, J. Hrabina, P. Jedlicka, and O. Cíp, “Absolute frequency shifts of iodine cells for laser stabilization,” Metrologia 46, 450–456 (2009). [CrossRef]
  29. B. Bodermann, M. Klug, U. Winkelhoff, H. Knöckel, and E. Tiemann, “Precise frequency measurements of I2 lines in the near infrared by Rb reference lines,” Eur. Phys. J. D 11, 213–225 (2000). [CrossRef]
  30. Y. Zhang, J. Ishikawa, and F.-L. Hong, “Accurate frequency atlas of molecular iodine near 532 nm measured by an optical frequency comb generator,” Opt. Commun. 200, 209–215 (2001). [CrossRef]
  31. B. Bodermann, “Untersuchung zur Realisierung eines durchstimmbaren, hochpräzisen Frequenzstandards im NIR und zur Erweiterung des Spektralbereiches mit Hilfe des I1272-Moleküls,” Ph.D. dissertation (Universität Hannover, 1998).
  32. S. Reinhardt, B. Bernhardt, C. Geppert, R. Holzwarth, G. Huber, S. Karpuk, N. Miski-Oglu, W. Nortershauser, C. Novotny, and T. Udem, “Absolute frequency measurements and comparisons in iodine at 735 nm and 772 nm,” Opt. Commun. 274, 354–360 (2007). [CrossRef]
  33. B. Bodermann, H. Knöckel, and E. Tiemann, “Widely usable interpolation formulae for hyperfine splittings in the I1272 spectrum,” Eur. Phys. J. D 19, 31–44 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited