OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 6 — Jun. 1, 2010
  • pp: 1252–1259

Subwavelength grating-based nanoplasmonic modulation for surface plasmon resonance imaging with enhanced resolution

Dong Jun Kim and Donghyun Kim  »View Author Affiliations


JOSA B, Vol. 27, Issue 6, pp. 1252-1259 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001252


View Full Text Article

Enhanced HTML    Acrobat PDF (651 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study, we have investigated nanoplasmonic modulation for surface plasmon resolution imaging. Subwavelength metal grating was used to localize plasmon excitation, thereby limiting the propagation of surface plasmon. An optimum grating structure for an enhanced lateral imaging resolution was designed based on the effective medium theory. A metal grating at 400 nm period was fabricated on a metallic thin film and a BK7 glass substrate. For metal, both gold and silver were considered. Effects of other geometrical parameters such as grating thickness and orientation were also explored. The resolution enhancement was found to be more effective with silver than gold. Studies on grating thickness and orientation suggest that stronger plasmon localization produce more efficient resolution enhancement.

© 2010 Optical Society of America

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(240.6680) Optics at surfaces : Surface plasmons
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

History
Original Manuscript: January 26, 2010
Manuscript Accepted: April 9, 2010
Published: May 19, 2010

Virtual Issues
Vol. 5, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Dong Jun Kim and Donghyun Kim, "Subwavelength grating-based nanoplasmonic modulation for surface plasmon resonance imaging with enhanced resolution," J. Opt. Soc. Am. B 27, 1252-1259 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-6-1252


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Brockman, A. G. Frutos, and R. M. Corn, “A multi-step chemical modification procedure to create DNA arrays on gold surfaces for the study of protein-DNA interactions with surface plasmon resonance imaging,” J. Am. Chem. Soc. 121, 8044–8051 (1999). [CrossRef]
  2. N. Blow, “Proteins and proteomics: life on the surface,” Nat. Methods 6, 389–393 (2009). [CrossRef]
  3. W. Hickel, D. Kamp, and W. Knoll, “Surface-plasmon microscopy,” Nature 339, 186–188 (1989). [CrossRef]
  4. K.-F. Giebel, C. Bechinger, S. Herminghaus, M. Riedel, P. Leiderer, U. Weiland, and M. Bastmeyer, “Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy,” Biophys. J. 76, 509–516 (1999). [CrossRef] [PubMed]
  5. W. L. Barnes, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  6. C. E. H. Berger, R. P. H. Kooyman, and J. Greve, “Resolution in surface plasmon microscopy,” Rev. Sci. Instrum. 65, 2829–2836 (1994). [CrossRef]
  7. H. E. de Bruijn, R. P. H. Kooyman, and J. Greve, “Surface plasmon resonance microscopy: improvement of the resolution by rotation of the object,” Appl. Opt. 32, 2426–2430 (1993). [CrossRef] [PubMed]
  8. A. N. Grigorenko, A. A. Beloglazov, P. I. Nikitin, C. Kuhne, G. Steiner, and R. Salzer, “Dark-field surface plasmon resonance microscopy,” Opt. Commun. 174, 151–155 (2000). [CrossRef]
  9. G. Stabler, M. G. Somekh, and C. W. See, “High-resolution wide-field surface plasmon microscopy,” J. Microsc. 214, 328–333 (2004). [CrossRef] [PubMed]
  10. B. Huang, F. Yu, and R. N. Zare, “Surface plasmon resonance imaging using a high numerical aperture microscope objective,” Anal. Chem. 79, 2979–2983 (2007). [CrossRef] [PubMed]
  11. M. G. Somekh, S. Liu, T. S. Velinov, and C. W. See, “High-resolution scanning surface-plasmon microscopy,” Appl. Opt. 39, 6279–6287 (2000). [CrossRef]
  12. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15, 1381–1386 (1998). [CrossRef]
  13. T. Tanaka and S. Yamamoto, “Laser-scanning surface plasmon polariton resonance microscopy with multiple photodetectors,” Appl. Opt. 42, 4002–4007 (2003). [CrossRef] [PubMed]
  14. L. Berguiga, S. Zhang, F. Argoul, and J. Elezgaray, “High-resolution surface-plasmon imaging in air and in water: V(z) curve and operating conditions,” Opt. Lett. 32, 509–511 (2007). [CrossRef] [PubMed]
  15. M. G. Somekh, G. Stabler, S. Liu, J. Zhang, and C. W. See, “Wide-field high-resolution surface-plasmon interference microscopy,” Opt. Lett. 34, 3110–3112 (2009). [CrossRef] [PubMed]
  16. I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons,” Phys. Rev. Lett. 94, 057401 (2005). [CrossRef] [PubMed]
  17. I. I. Smolyaninov and C. C. Davis, “Super-resolution optical microscopy based on photonic crystal materials,” Phys. Rev. B 72, 085442 (2005). [CrossRef]
  18. E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11, 635–649 (1996). [CrossRef]
  19. L. He, M. D. Musick, S. R. Nicewarner, F. G. Salinas, S. J. Benkovic, M. J. Natan, and C. D. Keating, “Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization,” J. Am. Chem. Soc. 122, 9071–9077 (2000). [CrossRef]
  20. K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13, 3737–3742 (2005). [CrossRef] [PubMed]
  21. K. Kim, S. J. Yoon, and D. Kim, “Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study,” Opt. Express 14, 12419–12431 (2006). [CrossRef] [PubMed]
  22. K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Experimental study of sensitivity enhancement in surface plasmon resonance biosensors by use of periodic metallic nanowires,” Opt. Lett. 32, 1902–1904 (2007). [CrossRef] [PubMed]
  23. L. Malic, B. Cui, T. Veres, and M. Tabrizian, “Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts,” Opt. Lett. 32, 3092–3094 (2007). [CrossRef] [PubMed]
  24. S. J. Yoon and D. Kim, “Target dependence of the sensitivity in periodic nanowire-based localized surface plasmon resonance biosensors,” J. Opt. Soc. Am. A 25, 725–735 (2008). [CrossRef]
  25. U. Fernandez, T. M. Fischer, and W. Knoll, “Surface-plasmon microscopy with grating couplers,” Opt. Commun. 102, 49–52 (1993). [CrossRef]
  26. H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988), Chap. 1.
  27. A. J. A. El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys. 93, 2590–2594 (2003). [CrossRef]
  28. S. J. Yoon and D. Kim, “Thin-film-based field penetration engineering for surface plasmon resonance biosensing,” J. Opt. Soc. Am. A 24, 2543–2549 (2007). [CrossRef]
  29. S. M. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  30. P. Lalanne and J. P. Hugonin, “High-order effective-medium theory of subwavelength gratings in classical mounting: application to volume holograms,” J. Opt. Soc. Am. A 15, 1843–1851 (1998). [CrossRef]
  31. C. W. Haggans, L. Li, and R. K. Kostuk, “Effective-medium theory of zeroth-order lamellar gratings in conical mounting,” J. Opt. Soc. Am. A 10, 2217–2225 (1993). [CrossRef]
  32. S. Moon and D. Kim, “Fitting-based determination of an effective medium of a metallic periodic structure and application to photonic crystals,” J. Opt. Soc. Am. A 23, 199–207 (2006). [CrossRef]
  33. D. Kim and S. J. Yoon, “Effective medium-based analysis of nanowire-mediated localized surface plasmon resonance,” Appl. Opt. 46, 872–880 (2007). [CrossRef] [PubMed]
  34. E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  35. M. G. Somekh, S. G. Liu, T. S. Velinov, and C. W. See, “Optical V(z) for high resolution 2π surface plasmon microscopy,” Opt. Lett. 25, 823–825 (2000). [CrossRef]
  36. Z. Chen, I. R. Hooper, and J. R. Sambles, “Grating-coupled surface plasmon polaritons and waveguide modes in a silver-dielectric-silver structure,” J. Opt. Soc. Am. A 24, 3547–3553 (2007). [CrossRef]
  37. Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited