OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 6 — Jun. 1, 2010
  • pp: A1–A6

Teleportation of an N-photon Greenberger–Horne–Zeilinger (GHZ) polarization-entangled state using linear optical elements

Yan Xia, Jie Song, Pei-Min Lu, and He-Shan Song  »View Author Affiliations


JOSA B, Vol. 27, Issue 6, pp. A1-A6 (2010)
http://dx.doi.org/10.1364/JOSAB.27.0000A1


View Full Text Article

Enhanced HTML    Acrobat PDF (349 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

With one pair of photons’ polarization-entangled state as the quantum channel, we present an explicit generalized linear optical protocol for perfectly teleporting an N-photon Greenberger–Horne–Zeilinger (GHZ) polarization-entangled state from a sender to a receiver using only one two-photon polarization-entangled state as the quantum channel. This protocol has the advantage of transmitting much fewer photons and classical information for teleporting the N-photon GHZ polarization-entangled state than others, and the proposed setup involves simple linear optical elements, photon polarization-entangled states, and conventional photon detectors. These make the present protocol more realizable in experiments.

© 2010 Optical Society of America

OCIS Codes
(000.6800) General : Theoretical physics
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Entanglement in Photonic Systems

History
Original Manuscript: September 21, 2009
Revised Manuscript: October 27, 2009
Manuscript Accepted: November 24, 2009
Published: December 24, 2009

Citation
Yan Xia, Jie Song, Pei-Min Lu, and He-Shan Song, "Teleportation of an N-photon Greenberger-Horne-Zeilinger (GHZ) polarization-entangled state using linear optical elements," J. Opt. Soc. Am. B 27, A1-A6 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-6-A1


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and EinsteiN-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1898 (1993). [CrossRef] [PubMed]
  2. Y. Xia, C. B. Fu, S. Zhang, K. H. Yeon, and C. I. Um, “Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four-particle state and a three-particle GHZ state,” J. Korean Phys. Soc. 46, 388-392 (2005).
  3. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145-195 (2002). [CrossRef]
  4. W. Y. Wang, C. Wang, K. Wen, and G. L. Long, “Quantum key distribution network based on differential phase shift,” Chin. Phys. Lett. 24, 1463-1466 (2007). [CrossRef]
  5. F. G. Deng, X. H. Li, C. Y. Li, P. Zhou, and H. Y. Zhou, “Multiparty quantum-state sharing of an arbitrary two-particle state with EinsteiN-Podolsky-Rosen pairs,” Phys. Rev. A 72, 044301 (2005). [CrossRef]
  6. Y. Xia and H. S. Song, “Controlled quantum secure direct communication using a noN-symmetric quantum channel with quantum superdense coding,” Phys. Lett. A 364, 117-122 (2007). [CrossRef]
  7. B. Zeng and P. Zhang, “Remote-state preparation in higher dimension and the parallelizable manifold Sn−1,” Phys. Rev. A 65, 022316 (2002). [CrossRef]
  8. C. Wang, F. G. Deng, and G. L. Long, “Multi-step quantum secure direct communication using multi-particle GreeN-Horne-Zeilinger state,” Opt. Commun. 253, 15-20 (2005). [CrossRef]
  9. A. Karlsson and M. Bourennane, “Quantum teleportation using three-particle entanglement,” Phys. Rev. A 58, 4394-4400 (1998). [CrossRef]
  10. J. Lee, H. Min, and S. D. Oh, “Multipartite entanglement for entanglement teleportation,” Phys. Rev. A 66, 052318 (2002). [CrossRef]
  11. D. Boschi, S. Branca, F. DeMartini, L. Hardy, and S. Popescu, “Experimental realization of teleporting an unknown pure quantum state via dual classical and EinsteiN-Podolsky-Rosen channels,” Phys. Rev. Lett. 80, 1121-1125 (1998). [CrossRef]
  12. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575-579 (1997). [CrossRef]
  13. H. W. Lee and J. Kim, “Quantum teleportation and Bells inequality using single-particle entanglement,” Phys. Rev. A 63, 012305 (2000). [CrossRef]
  14. G. Rigolin, “Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement,” Phys. Rev. A 71, 032303 (2005). [CrossRef]
  15. Y. Yeo and W. K. Chua, “Teleportation and dense coding with genuine multipartite entanglement,” Phys. Rev. Lett. 96, 060502 (2006). [CrossRef] [PubMed]
  16. B. Zeng, X. S. Liu, Y. S. Li, and G. L. Long, “High-dimensional multi-particle cat-like state teleportation,” Commun. Theor. Phys. 38, 537-540 (2002).
  17. L. Vaidman, “Teleportation of quantum states,” Phys. Rev. A 49, 1473-1476 (1994). [CrossRef] [PubMed]
  18. S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869-872 (1998). [CrossRef]
  19. Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008). [CrossRef]
  20. H. Kim, Y. W. Cheong, and H. W. Lee, “Generalized measurement and conclusive teleportation with nonmaximal entanglement,” Phys. Rev. A 70, 012309 (2004). [CrossRef]
  21. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722-725 (1996). [CrossRef] [PubMed]
  22. P. Zhou, X. H. Li, F. G. Deng, and H. Y. Zhou, “Probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel and its application in quantum state sharing,” Chin. Phys. 16, 2867-2874 (2007). [CrossRef]
  23. P. Agrawal and A. K. Pati, “Probabilistic quantum teleportation,” Phys. Lett. A 305, 12-17 (2002). [CrossRef]
  24. G. Gordon and G. Rigolin, “Generalized teleportation protocol,” Phys. Rev. A 73, 042309 (2006). [CrossRef]
  25. G. Gordon and G. Rigolin, “Generalized quantum-state sharing,” Phys. Rev. A 73, 062316 (2006). [CrossRef]
  26. Y. Xia, J. Song, and H. S. Song, “Re-examining generalized teleportation protocol,” Opt. Commun. 279, 395-398 (2007). [CrossRef]
  27. Y. Xia, J. Song, H. S. Song, and S. Zhang, “Controlled generation of four-photon polarization-entangled decoherence-free states with conventional photon detectors,” J. Opt. Soc. Am. B 26, 129-132 (2009). [CrossRef]
  28. J. Kempe, D. Bacon, D. A. Lidar, and K. B. Whaley, “Theory of decoherence-free fault-tolerant universal quantum computation,” Phys. Rev. A 63, 042307 (2001). [CrossRef]
  29. An example that transforms |0000⟩ to (1/2)(|0000⟩+|1111⟩) is given in Fig. in . The protocol involves only two kinds of operations: a Hadamard transformation plays on the first qubit and three controlled-Not gates play on the last three qubits, respectively. In the last qubit, the rotation is either π/2 for (1/2)(|0000⟩+|1111⟩) or −π/2(1/2)(|0000⟩−|1111⟩).
  30. G. L. Long and Y. Sun, “Efficient scheme for initializing a quantum register with an arbitrary superposed state,” Phys. Rev. A 64, 014303 (2001). [CrossRef]
  31. S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deléglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon is a cavity,” Nature 446, 297-300 (2007). [CrossRef] [PubMed]
  32. S. Chen, Y. A. Chen, B. Zhao, Z.-S. Yuan, J. Schmiedmayer, and J. W. Pan, “Demonstration of a stable atom-photon entanglement source for quantum repeaters,” Phys. Rev. Lett. 99, 180505 (2007). [CrossRef] [PubMed]
  33. M. Eibl, N. Kiesel, M. Bourennane, C. Kurtsiefer, and H. Weinfurter, “Experimental realization of a three-qubit entangled W state,” Phys. Rev. Lett. 92, 077901 (2004). [CrossRef] [PubMed]
  34. J. W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurter, and A. Zeilinger, “Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement,” Nature 403, 515-519 (2000). [CrossRef] [PubMed]
  35. D. F. V. James and P. G. Kwiat, “Atomic-vapor-based high efficiency optical detectors with photon number resolution,” Phys. Rev. Lett. 89, 183601 (2002). [CrossRef] [PubMed]
  36. J. Kim, S. Takeuchi, and Y. Yamamoto, “Multiphoton detection using visible light photon counter,” Appl. Phys. Lett. 74, 902-904 (1999). [CrossRef]
  37. J. W. Pan, M. Daniell, S. Gasparoni, G. Weihs, and A. Zeilinger, “Experimental demonstration of four-photon entanglement and high-fidelity teleportation,” Phys. Rev. Lett. 86, 4435 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited