Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Quantum characterization of bipartite Gaussian states

Not Accessible

Your library or personal account may give you access

Abstract

Gaussian bipartite states are basic tools for the realization of quantum information protocols with continuous variables. Their complete characterization is obtained by the reconstruction of the corresponding covariance matrix. Here we describe in detail and experimentally demonstrate a robust and reliable method to fully characterize bipartite optical Gaussian states by means of a single homodyne detector. We have successfully applied our method to the bipartite states generated by a sub-threshold type-II optical parametric oscillator which produces a pair of thermal cross-polarized entangled cw frequency degenerate beams. The method provides a reliable reconstruction of the covariance matrix and allows us to retrieve all the physical information about the state under investigation. These include observable quantities, such as energy and squeezing, as well as nonobservable ones such as purity, entropy, and entanglement. Our procedure also includes advanced tests for the Gaussianity of the state and, overall, represents a powerful tool to study the bipartite Gaussian state from the generation stage to the detection one.

© 2010 Optical Society of America

Full Article  |  PDF Article
More Like This
Reconstructing Gaussian bipartite states with a single polarization-sensitive homodyne detector

Jonas Junker, Dennis Wilken, Daniel Steinmeyer, and Michèle Heurs
Opt. Express 30(19) 33860-33868 (2022)

Asymmetric Einstein–Podolsky–Rosen steering manipulating among multipartite entangled states

Shuqin Zhai, Nan Yuan, and Kui Liu
J. Opt. Soc. Am. B 36(10) 2920-2926 (2019)

Experimental demonstration of robustness of Gaussian quantum coherence

Haijun Kang, Dongmei Han, Na Wang, Yang Liu, Shuhong Hao, and Xiaolong Su
Photon. Res. 9(7) 1330-1335 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (36)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved