OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 6 — Jun. 1, 2010
  • pp: A146–A151

Optimum design for BB84 quantum key distribution in tree-type passive optical networks

José Capmany and Carlos R. Fernández-Pousa  »View Author Affiliations

JOSA B, Vol. 27, Issue 6, pp. A146-A151 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (502 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that there is a trade-off between the useful key distribution bit rate and the total length of a deployed fiber in tree-type passive optical networks (PONs) for Bennet and Brassard 1984 protocol (BB84) quantum key distribution applications. A two stage splitting architecture where one splitting is carried in the central office and a second one in the outside plant and a figure of merit to account for the trade-off are proposed. We find that there is an optimum solution for the splitting ratios of both stages in cases of photon number splitting attacks and decoy state transmission. We then analyze the effects of the different relevant physical parameters of the PON on the optimum solution.

© 2010 Optical Society of America

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(040.5570) Detectors : Quantum detectors
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Cryptography

Original Manuscript: October 28, 2009
Revised Manuscript: March 19, 2010
Manuscript Accepted: April 2, 2010
Published: May 6, 2010

José Capmany and Carlos R. Fernández-Pousa, "Optimum design for BB84 quantum key distribution in tree-type passive optical networks," J. Opt. Soc. Am. B 27, A146-A151 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Wiesner, “Conjugate coding,” SIGACT News 15, 78–88 (1983). [CrossRef]
  2. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing” in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (IEEE, 1984), pp. 175–179.
  3. N. Gisin, G. Ribordy, W. Tittel, and H. Zbiden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
  4. W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982). [CrossRef]
  5. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992). [CrossRef]
  6. P. D. Townsend, J. G. Rarity, and P. R. Tapster, “Single-photon interference in a 10 km long optical fiber interferometer,” Electron. Lett. 29, 634–635 (1993). [CrossRef]
  7. P. D. Townsend, D. J. D. Phoenix, K. J. Blow, and S. Cova, “Design of quantum cryptography systems for passive optical networks,” Electron. Lett. 30, 1875–1876 (1994). [CrossRef]
  8. P. D. Townsend, “Quantum cryptography on optical fiber networks,” Opt. Fiber Technol. 4, 345–370 (1998). [CrossRef]
  9. K. Inoue, E. Waks, and Y. Yamamoto, “Differential phase shift quantum key distribution,” Phys. Rev. Lett. 89, 037902 (2002). [CrossRef] [PubMed]
  10. H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution over 105 km fibre,” New J. Phys. 7, 232 (2005). [CrossRef]
  11. M. Curty, K. Tamaki, and T. Moroder, “Effect of detector dead times on the security evaluation of differential-phase-shift quantum key distribution against sequential attacks,” Phys. Rev. A 77, 052321 (2008). [CrossRef]
  12. J.-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, and W. T. Rhodes, “Single-photon interference in sidebands of phase-modulated light for quantum cryptography,” Phys. Rev. Lett. 82, 1656–1659 (1999). [CrossRef]
  13. J.-M. Mérolla, Y. Mazurenko, J. P. Goedgebuer, H. Porte, and W. T. Rhodes, “Phase-modulation transmission system for quantum cryptography,” Opt. Lett. 24, 104–106 (1999). [CrossRef]
  14. O. Guerreau, J.-M. Mérolla, A. Soujaeff, F. Patois, J. P. Goedgebuer, and F. J. Malassenet, “Long distance QKD transmission using single-sideband detection scheme with WDM synchronization,” IEEE J. Sel. Top. Quantum Electron. 9, 1533–1540 (2003). [CrossRef]
  15. P. D. Townsend, “Quantum cryptography on multi-user optical networks,” Nature 385, 47–49 (1997). [CrossRef]
  16. P. D. Kumavor, A. C. Beal, S. Yelin, E. Donkor, and B. C. Wang, “Comparison of four multi-user quantum key distribution schemes over passive optical networks’,” IEEE J. Lightwave Technol. 23, 268–276 (2005). [CrossRef]
  17. D. Gottesman, H. K. Lo, N. Lutkenhaus, and J. Preskill, “Security of quantum key distribution with imperfect devices,” Quantum Inf. Comput. 4, 325–360 (2004).
  18. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009). [CrossRef]
  19. R. E. Wagner, “Fiber based broadband access technology and deployment,” in Optical Fiber Telecommunications, Vol. V.B of Systems and Networks, I.P.Kaminow, T.Li, and A.E.Willner, eds. (Academic, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited