OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 6 — Jun. 1, 2010
  • pp: A152–A163

Analyzing quantum jumps of one and two atoms strongly coupled to an optical cavity

Sebastian Reick, Klaus Mølmer, Wolfgang Alt, Martin Eckstein, Tobias Kampschulte, Lingbo Kong, René Reimann, Alexander Thobe, Artur Widera, and Dieter Meschede  »View Author Affiliations


JOSA B, Vol. 27, Issue 6, pp. A152-A163 (2010)
http://dx.doi.org/10.1364/JOSAB.27.00A152


View Full Text Article

Enhanced HTML    Acrobat PDF (943 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We induce quantum jumps between the hyperfine ground states of one and two cesium atoms, strongly coupled to the mode of a high-finesse optical resonator, and analyze the resulting random telegraph signals. We identify experimental parameters to deduce the atomic spin state nondestructively from the stream of photons transmitted through the cavity, achieving a compromise between a good signal-to-noise ratio and minimal measurement-induced perturbations. In order to extract optimum information about the spin dynamics from the photon count signal, a Bayesian update formalism is employed, which yields time-dependent probabilities for the atoms to be in one of the two hyperfine states. This analysis is extended to short time bins where a simple threshold analysis would not yield reasonable results. We discuss the effect of super-Poissonian photon number distributions caused by atomic motion.

© 2010 Optical Society of America

OCIS Codes
(000.1600) General : Classical and quantum physics
(270.0270) Quantum optics : Quantum optics
(270.2500) Quantum optics : Fluctuations, relaxations, and noise
(270.5580) Quantum optics : Quantum electrodynamics

ToC Category:
Cavity Quantum Electrodynamics

History
Original Manuscript: February 10, 2010
Manuscript Accepted: March 15, 2010
Published: May 7, 2010

Citation
Sebastian Reick, Klaus Mølmer, Wolfgang Alt, Martin Eckstein, Tobias Kampschulte, Lingbo Kong, René Reimann, Alexander Thobe, Artur Widera, and Dieter Meschede, "Analyzing quantum jumps of one and two atoms strongly coupled to an optical cavity," J. Opt. Soc. Am. B 27, A152-A163 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-6-A152


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Haroche and J.-M. Raimond, Exploring the Quantum (Oxford U. Press, 2006). [CrossRef]
  2. E. T. Jaynes and F. W. Cummings, “Comparison of quantum and semiclassical radiation theories with application to the beam maser,” Proc. IEEE 51, 89–109 (1963). [CrossRef]
  3. J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H.-C. Nägerl, D. Stamper-Kurn, and H. J. Kimble, “State-insensitive cooling and trapping of single atoms in an optical cavity,” Phys. Rev. Lett. 90, 133602 (2003). [CrossRef] [PubMed]
  4. A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity,” Phys. Rev. Lett. 97, 083602 (2006). [CrossRef] [PubMed]
  5. S. Nußmann, K. Murr, M. Hijlkema, B. Weber, A. Kuhn, and G. Rempe, “Vacuum-stimulated cooling of single atoms in three dimensions,” Nat. Phys. 1, 122–125 (2005). [CrossRef]
  6. S. Nußmann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett. 95, 173602 (2005). [CrossRef] [PubMed]
  7. K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007). [CrossRef] [PubMed]
  8. M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschenbeutel, S. Reick, K. Schörner, A. Widera, and D. Meschede, “Controlled insertion and retrieval of atoms coupled to a high-finesse optical resonator,” New J. Phys. 10, 073023 (2008). [CrossRef]
  9. M. Khudaverdyan, W. Alt, T. Kampschulte, S. Reick, A. Thobe, A. Widera, and D. Meschede, “Quantum jumps and spin dynamics of interacting atoms in a strongly coupled atom-cavity system,” Phys. Rev. Lett. 103, 123006 (2009). [CrossRef] [PubMed]
  10. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001). [CrossRef]
  11. A. D. Boozer, A. Boca, R. Miller, T. E. Northup, and H. J. Kimble, “Reversible state transfer between light and a single trapped atom,” Phys. Rev. Lett. 98, 193601 (2007). [CrossRef] [PubMed]
  12. T. Wilk, S. C. Webster, H. P. Specht, G. Rempe, and A. Kuhn, “Polarization-controlled single photons,” Phys. Rev. Lett. 98, 063601 (2007). [CrossRef] [PubMed]
  13. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431, 1075–1078 (2004). [CrossRef] [PubMed]
  14. C. Maurer, C. Becher, C. Russo, J. Eschner, and R. Blatt, “A single-photon source based on a single Ca+ ion,” New J. Phys. 6, 94-1–94-19 (2004). [CrossRef]
  15. L. You, X. X. Yi, and X. H. Su, “Quantum logic between atoms inside a high-Q optical cavity,” Phys. Rev. A 67, 032308 (2003). [CrossRef]
  16. A. S. Sørensen and K. Mølmer, “Measurement induced entanglement and quantum computation with atoms in optical cavities,” Phys. Rev. Lett. 91, 097905 (2003). [CrossRef] [PubMed]
  17. J. Metz and A. Beige, “Macroscopic quantum jumps and entangled-state preparation,” Phys. Rev. A 76, 022331 (2007). [CrossRef]
  18. S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deleglise, U. B. Hoff, M. Brune, J.-M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature 446, 297–300 (2007). [CrossRef] [PubMed]
  19. C. Guerlin, J. Bernu, S. Deléglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J.-M. Raimond, and S. Haroche, “Progressive field-state collapse and quantum non-demolition photon counting,” Nature 448, 889–893 (2007). [CrossRef] [PubMed]
  20. Y. Yuzhelevski, M. Yuzhelevski, and G. Jung, “Random telegraph noise analysis in time domain,” Rev. Sci. Instrum. 71, 1681–1688 (2000). [CrossRef]
  21. S. Kuhr, W. Alt, D. Schrader, M. Müller, V. Gomer, and D. Meschede, “Deterministic delivery of a single atom,” Science 293, 278–280 (2001). [CrossRef] [PubMed]
  22. B. Gao, “Effects of Zeeman degeneracy on the steady-state properties of an atom interacting with a near-resonant laser field: analytic results,” Phys. Rev. A 48, 2443–2448 (1993). [CrossRef] [PubMed]
  23. The mF distribution within the |F=4⟩ manifold for a coordinate system where the quantization axis is parallel to the electric field, i.e., for π-transitions, it is calculated to be 34.4% in mF=0, 23.9% in mF=±1, 7.8% in mF=±2, 1.1% in mF=±3, and 0.1% in mF=±4.
  24. D. Schrader, I. Dotsenko, M. Khudaverdyan, Y. Miroshnychenko, A. Rauschenbeutel, and D. Meschede, “Neutral atom quantum register,” Phys. Rev. Lett. 93, 150501 (2004). [CrossRef] [PubMed]
  25. V. B. Braginsky, Y. I. Vorontsov, and K. S. Thorne, “Quantum nondemolition measurements,” Science 209, 547–557 (1980). [CrossRef] [PubMed]
  26. S. Chaudhury, G. A. Smith, K. Schulz, and P. S. Jessen, “Continuous nondemolition measurement of the Cs clock transition pseudospin,” Phys. Rev. Lett. 96, 043001 (2006). [CrossRef] [PubMed]
  27. P. J. Windpassinger, D. Oblak, P. G. Petrov, M. Kubasik, M. Saffman, C. L. G. Alzar, J. Appel, J. H. Müller, N. Jærgaard, and E. S. Polzik, “Nondestructive probing of Rabi oscillations on the cesium clock transition near the standard quantum limit,” Phys. Rev. Lett. 100, 103601 (2008). [CrossRef] [PubMed]
  28. J. C. Berquist, R. G. Hulet, W. Itano, and D. J. Wineland, “Observation of quantum jumps in a single atom,” Phys. Rev. Lett. 57, 1669–1702 (1986). [CrossRef]
  29. W. Nagourney, J. Sandberg, and H. Dehmelt, “Shelved optical electron amplifier: observation of quantum jumps,” Phys. Rev. Lett. 56, 2797–2799 (1986). [CrossRef] [PubMed]
  30. R. J. Cook and H. J. Kimble, “Possibility of direct observation of quantum jumps,” Phys. Rev. Lett. 54, 1023–1026 (1985). [CrossRef] [PubMed]
  31. T. Sauter, W. Neuhauser, R. Blatt, and P. E. Toschek, “Observation of quantum jumps,” Phys. Rev. Lett. 57, 1696–1698 (1986). [CrossRef] [PubMed]
  32. W. M. Itano, J. Berquist, R. G. Hulet, and D. Wineland, “Radiative decay rates in Hg+ from observations of quantum jumps in a single ion,” Phys. Rev. Lett. 59, 2732–2735 (1987). [CrossRef] [PubMed]
  33. G. Hechenblaikner, M. Gangl, P. Horak, and H. Ritsch, “Cooling an atom in a weakly driven high-Q cavity,” Phys. Rev. A 58, 3030–3042 (1998). [CrossRef]
  34. R. A. Cline, J. D. Miller, M. R. Matthews, and D. J. Heinzen, “Spin relaxation of optically trapped atoms by light scattering,” Opt. Lett. 19, 207–209 (1994). [CrossRef] [PubMed]
  35. P. Domokos and H. Ritsch, “Mechanical effects of light in optical resonators,” J. Opt. Soc. Am. B 20, 1098–1130 (2003). [CrossRef]
  36. K. Murr, S. Nußmann, T. Puppe, M. Hijlkema, B. Weber, S. C. Webster, A. Kuhn, and G. Rempe, “Three-dimensional cavity cooling and trapping in an optical lattice,” Phys. Rev. A 73, 063415 (2006). [CrossRef]
  37. A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, “Two-photon gateway in one-atom cavity quantum electrodynamics,” Phys. Rev. Lett. 101, 203602 (2008). [CrossRef]
  38. O. Cappé, E. Moulines, and T. Ryden, Inference in Hidden Markov Models (Springer, 2000).
  39. R. Paroli, G. Redaelli, and L. Spezia, “Hidden Markov models for time series of overdispersed insurances counts,” in Proceedings of the XXXI International ASTIN Colloquium (Istituto Italiano degli Attuari, 2000), pp. 461–474.
  40. A. R. R. Carvalho and J. J. Hope, “Stabilizing entanglement by quantum-jump-based feedback,” Phys. Rev. A 76, 010301 (2007). [CrossRef]
  41. A. R. R. Carvalho, A. J. S. Reid, and J. J. Hope, “Controlling entanglement by direct quantum feedback,” Phys. Rev. A 78, 012334 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited