OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 6 — Jun. 1, 2010
  • pp: A170–A174

Super-resolution at the shot-noise limit with coherent states and photon-number-resolving detectors

Yang Gao, Petr M. Anisimov, Christoph F. Wildfeuer, Jerome Luine, Hwang Lee, and Jonathan P. Dowling  »View Author Affiliations

JOSA B, Vol. 27, Issue 6, pp. A170-A174 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (201 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



There has been much recent interest in quantum optical interferometry for applications to metrology, subwavelength imaging, and remote sensing such as in quantum laser radar (LADAR). For quantum LADAR, atmospheric absorption rapidly degrades any quantum state of light, so that for high-photon loss the optimal strategy is to transmit coherent states of light, which suffer no worse loss than the Beer law for classical optical attenuation, and which provides sensitivity at the shot-noise limit. We show that coherent light coupled with photon-number-resolving detectors can provide a super-resolution much below the Rayleigh diffraction limit, with sensitivity no worse than shot noise in terms of the detected photon power.

© 2010 Optical Society of America

OCIS Codes
(040.5570) Detectors : Quantum detectors
(050.5080) Diffraction and gratings : Phase shift
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Quantum Metrology

Original Manuscript: October 5, 2009
Revised Manuscript: March 4, 2010
Manuscript Accepted: April 10, 2010
Published: May 14, 2010

Yang Gao, Petr M. Anisimov, Christoph F. Wildfeuer, Jerome Luine, Hwang Lee, and Jonathan P. Dowling, "Super-resolution at the shot-noise limit with coherent states and photon-number-resolving detectors," J. Opt. Soc. Am. B 27, A170-A174 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. N. Boto, P. Kok, D. S. Abrams, S. L. Braunstein, C. P. Williams, and J. P. Dowling, “Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit,” Phys. Rev. Lett. 85, 2733–2736 (2000). [CrossRef] [PubMed]
  2. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306, 1330–1336 (2004). [CrossRef] [PubMed]
  3. P. Kok, S. L. Braunstein, and J. P. Dowling, “Quantum lithography, entanglement and Heisenberg-limited parameter estimation,” J. Opt. B: Quantum Semiclassical Opt. 6, S811–S815 (2004). [CrossRef]
  4. T. Nagata, R. Okamoto, J. L. O’Brien, K. Sasaki, and S. Takeuchi, “Beating the standard quantum limit with four-entangled photons,” Science 316, 726–729 (2007). [CrossRef] [PubMed]
  5. J. P. Dowling, “Quantum optical metrology—the lowdown on high-N00N states,” Contemp. Phys. 49, 125–143 (2008). [CrossRef]
  6. M. A. Rubin and S. Kaushik, “Loss-induced limits to phase measurement precision with maximally entangled states,” Phys. Rev. A 75, 053805 (2007). [CrossRef]
  7. G. Gilbert, M. Hamrick, and Y. S. Weinstein, “Use of maximally entangled N-photon states for practical quantum interferometry,” J. Opt. Soc. Am. B 25, 1336–1340 (2008). [CrossRef]
  8. S. D. Huver, C. F. Wildfeuer, and J. P. Dowling, “Entangled Fock states for robust quantum optical metrology, imaging, and sensing,” Phys. Rev. A 78, 063828 (2008). [CrossRef]
  9. U. Dorner, R. Demkowicz-Dobrzanski, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, “Optimal quantum phase estimation,” Phys. Rev. Lett. 102, 040403 (2009). [CrossRef] [PubMed]
  10. R. Demkowicz-Dobrzanski, U. Dorner, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, “Quantum phase estimation with lossy interferometers,” Phys. Rev. A 80, 013825 (2009). [CrossRef]
  11. C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D 23, 1693–1708 (1981). [CrossRef]
  12. K. J. Resch, K. L. Pregnell, R. Prevedel, A. Gilchrist, G. J. Pryde, J. L. O’Brien, and A. G. White, “Time-reversal and super-resolving phase measurements,” Phys. Rev. Lett. 98, 223601 (2007). [CrossRef] [PubMed]
  13. V. Giovannetti, S. Lloyd, L. Maccone, and J. H. Shapiro, “Sub-Rayleigh-diffraction-bound quantum imaging,” Phys. Rev. A 79, 013827 (2009). [CrossRef]
  14. For example, two-photon microscopy is capable of resolving sub-wavelength features because it demonstrates amplitude super-resolution. There are many other primarily scanning techniques that are based on sharp amplitude dependence in order to produce high-resolution images pixel by pixel. Something similar could be implemented here given our phase super-resolution where one would have to scan a beam of light across a sample and measure phase shifts on a point-by-point basis. The finite size of the scanning laser beam would have to be deconvoluted out of the final image.
  15. R. A. Campos, B. E. A. Saleh, and M. C. Teich, “Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics,” Phys. Rev. A 40, 1371–1384 (1989). [CrossRef] [PubMed]
  16. C. C. Gerry and P. L. Knight, Introductory Quantum Optics (Cambridge Univ. Press, 2005).
  17. M. V. Berry and S. Popescu, “Evolution of quantum superoscillations and optical superresolution without evanescent waves,” J. Phys. A 39, 6965–6977 (2006). [CrossRef]
  18. C. C. Gerry, “Heisenberg-limit interferometry with four-wave mixers operating in a nonlinear regime,” Phys. Rev. A 61, 043811 (2000). [CrossRef]
  19. C. C. Gerry and R. A. Campos, “Generation of maximally entangled photonic states with a quantum-optical Fredkin gate,” Phys. Rev. A 64, 063814 (2001). [CrossRef]
  20. D. Rosenberg, A. E. Lita, A. J. Miller, and S. W. Nam, “Noise-free high-efficiency photon-number-resolving detectors,” Phys. Rev. A 71, 061803(R) (2005). [CrossRef]
  21. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032–3040 (2008). [CrossRef] [PubMed]
  22. G. Khoury, H. S. Eisenberg, E. J. S. Fonseca, and D. Bouwmeester, “Nonlinear interferometry via Fock-state projection,” Phys. Rev. Lett. 96, 203601 (2006). [CrossRef] [PubMed]
  23. C. F. Wildfeuer, A. J. Pearlman, J. Chen, J. Fan, A. Migdall, and J. P. Dowling, “Resolution and sensitivity of a Fabry–Perot interferometer with a photon-number-resolving detector,” Phys. Rev. A 80, 043822 (2009). [CrossRef]
  24. R. A. Campos, C. C. Gerry, and A. Benmoussa, “Optical interferometry at the Heisenberg limit with twin Fock states and parity measurements,” Phys. Rev. A 68, 023810 (2003). [CrossRef]
  25. Y. Gao and H. Lee, “Sub-shot-noise quantum optical interferometry: a comparison of entangled state performance within a unified measurement scheme,” J. Mod. Opt. 55, 3319–3327 (2008). [CrossRef]
  26. A. Chiruvelli and H. Lee, “Parity measurements in quantum optical metrology,” arXiv:0901.4395.
  27. P. M. Anisimov, G. M. Raterman, A. Chiruvelli, W. N. Plick, S. D. Huver, H. Lee, and J. P. Dowling, “Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit,” Phys. Rev. Lett. 104, 103602 (2010). [CrossRef] [PubMed]
  28. G. A. Durkin and J. P. Dowling, “Local and global distinguishability in quantum interferometry,” Phys. Rev. Lett. 99, 070801 (2007). [CrossRef] [PubMed]
  29. Perkin-Elmer SPCM-AQRH-xx APD operating manual.
  30. C. C. Gerry, A. Benmoussa, and R. A. Campos, “Nonlinear interferometer as a resource for maximally entangled photonic states: application to interferometry,” Phys. Rev. A 66, 013804 (2002). [CrossRef]
  31. C. C. Gerry, A. Benmoussa, and R. A. Campos, “Quantum nondemolition measurement of parity and generation of parity eigenstates in optical fields,” Phys. Rev. A 72, 053818 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited