OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 6 — Jun. 1, 2010
  • pp: A189–A197

Quantum optomechanics—throwing a glance [Invited]

M. Aspelmeyer, S. Gröblacher, K. Hammerer, and N. Kiesel  »View Author Affiliations

JOSA B, Vol. 27, Issue 6, pp. A189-A197 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (534 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Mechanical resonators are gradually becoming available as new quantum systems. Quantum optics in combination with optomechanical interactions (quantum optomechanics) provides a particularly helpful toolbox for generating and controlling mechanical quantum states. We highlight some of the current challenges in the field by discussing two of our recent experiments.

© 2010 Optical Society of America

OCIS Codes
(220.4000) Optical design and fabrication : Microstructure fabrication
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Metrology

Original Manuscript: February 19, 2010
Manuscript Accepted: February 26, 2010
Published: May 28, 2010

Virtual Issues
(2010) Advances in Optics and Photonics

M. Aspelmeyer, S. Gröblacher, K. Hammerer, and N. Kiesel, "Quantum optomechanics—throwing a glance [Invited]," J. Opt. Soc. Am. B 27, A189-A197 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Southwell, “Quantum coherence,” Nature 453, 1003–1049 (2008). [CrossRef] [PubMed]
  2. I. Osborne and R. Coontz, “Quantum wonderland,” Science 319, 1201–1213 (2008). [CrossRef] [PubMed]
  3. P. Zoller, Th. Beth, D. Binosi, R. Blatt, H. Briegel, D. Bruss, T. Calarco, J. I. Cirac, D. Deutsch, J. Eisert, A. Ekert, C. Fabre, N. Gisin, P. Grangiere, M. Grassl, S. Haroche, A. Imamoglu, A. Karlson, J. Kempe, L. Kouwenhoven, S. Kröll, G. Leuchs, M. Lewenstein, D. Loss, N. Lütkenhaus,S. Massar, J. E. Mooij, M. B. Plenio, E. Polzik, S. Popescu, G. Rempe, A. Sergienko, D. Suter, J. Twamley, G. Wendin, R. Werner, A. Winter, J. Wrachtrup, and A. Zeilinger, “Quantum information processing and communication,” Eur. Phys. J. D 36, 203–228 (2005). [CrossRef]
  4. M. Aspelmeyer and A. Zeilinger, “A quantum renaissance,” Phys. World 21(7), 22–28 (2008).
  5. R. Blatt and D. Wineland, “Entangled states of trapped atomic ions,” Nature 453, 1008–1014 (2008). [CrossRef] [PubMed]
  6. D. Jost, J. P. Home, J. M. Amini, D. Hanneke, R. Ozeri, C. Langer, J. J. Bollinger, D. Leibfried, and D. J. Wineland, “Entangled mechanical oscillators,” Nature 459, 683 (2009). [CrossRef] [PubMed]
  7. A. N. Cleland and M. L. Roukes, “Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals,” Appl. Phys. Lett. 69, 2653–2655 (1996). [CrossRef]
  8. A. N. Cleland and M. L. Roukes, “A nanometre-scale mechanical electrometer,” Nature 392, 160–162 (1998). [CrossRef]
  9. K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58, 36–42 (2005). [CrossRef]
  10. A. Cho, “Faintest thrum heralds quantum machines,” Science 327, 516–518 (2010). [CrossRef] [PubMed]
  11. D. B. Rugar, R. Budakian, H. J. Mamin, and B. W. Chui, “Single spin detection by magnetic resonance force microscopy,” Nature 430, 329–332 (2004). [CrossRef] [PubMed]
  12. M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304, 74–77 (2004). [CrossRef] [PubMed]
  13. M. D. LaHaye, J. Suh, P. M. Echternach, K. C. Schwab, and M. L. Roukes, “Nanomechanical measurements of a superconducting qubit,” Nature 459, 960–964 (2009). [CrossRef] [PubMed]
  14. A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, J. M. Martinis, and A. N. Cleland, “Quantum ground state and single-phonon control of a mechanical resonator,” Nature 464, 697–703 (2010). [CrossRef] [PubMed]
  15. T. J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. J. Vahala, “Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity,” Phys. Rev. Lett. 95, 033901 (2005). [CrossRef] [PubMed]
  16. S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäeuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006). [CrossRef] [PubMed]
  17. O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444, 71–74 (2006). [CrossRef] [PubMed]
  18. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008). [CrossRef] [PubMed]
  19. C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring nanomechanical motion with a microwave cavity interferometer,” Nat. Phys. 4, 555–560 (2008). [CrossRef]
  20. C. K. Law, “Effective Hamiltonian for the radiation in a cavity with a moving mirror and a time-varying dielectric medium,” Phys. Rev. A 49, 433–437 (1994). [CrossRef] [PubMed]
  21. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456, 480–484 (2008). [CrossRef] [PubMed]
  22. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009). [CrossRef] [PubMed]
  23. J. Roels, I. De Vlaminck, L. Lagae, Bj. Maes, D. Van Thourhout, and R. Baets, “Tunable optical forces between nanophotonic waveguides,” Nat. Nanotechnol. 4, 510–513 (2009). [CrossRef] [PubMed]
  24. G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Rivière, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Near-field cavity optomechanics with nanomechanical oscillators,” Nat. Phys. 5, 909–914 (2009). [CrossRef]
  25. V. B. Braginsky, A. B. Manukin, and M. Yu. Tikhonov, “Investigation of dissipative ponderomotive effects of electromagnetic radiation,” Sov. Phys. JETP 31, 829 (1970).
  26. C. Fabre, M. Pinard, S. Bourzeix, A. Heidmann, E. Giacobino, and S. Reynaud, “Quantum-noise reduction using a cavity with a movable mirror,” Phys. Rev. A 49, 1337–1343 (1994). [CrossRef] [PubMed]
  27. S. Mancini and P. Tombesi, “Quantum noise reduction by radiation pressure,” Phys. Rev. A 49, 4055–4065 (1994). [CrossRef] [PubMed]
  28. G. J. Milburn, K. Jacobs, and D. F. Walls, “Quantum-limited measurements with the atomic force microscope,” Phys. Rev. A 50, 5256–5263 (1994). [CrossRef] [PubMed]
  29. M. Pinard, C. Fabre, and A. Heidmann, “Quantum-nondemolition measurement of light by a piezoelectric crystal,” Phys. Rev. A 51, 2443–2449 (1995). [CrossRef] [PubMed]
  30. S. Mancini, D. Vitali, and P. Tombesi, “Optomechanical cooling of a macroscopic oscillator by homodyne feedback,” Phys. Rev. Lett. 80, 688–691 (1998). [CrossRef]
  31. P. F. Cohadon, A. Heidmann, and M. Pinard, “Cooling of a mirror by radiation pressure,” Phys. Rev. Lett. 83, 3174–3177 (1999). [CrossRef]
  32. S. Bose, K. Jacobs, and P. L. Knight, “Preparation of nonclassical states in cavities with a moving mirror,” Phys. Rev. A 56, 4175–4186 (1997). [CrossRef]
  33. S. Mancini, V. I. Man’ko, and P. Tombesi, “Ponderomotive control of quantum macroscopic coherence,” Phys. Rev. A 55, 3042–3050 (1997). [CrossRef]
  34. A. Dorsel, J. D. McCullen, P. Meystre, E. Vignes, and H. Walther, “Optical bistability and mirror confinement induced by radiation pressure,” Phys. Rev. Lett. 51, 1550–1553 (1983). [CrossRef]
  35. C. Höhberger Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432, 1002–1005 (2004). [CrossRef]
  36. T. J. Kippenberg and K. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008). [CrossRef] [PubMed]
  37. M. Aspelmeyer and K. Schwab, “Focus on mechanical systems at the quantum limit,” New J. Phys. 10, 095001 (2008). [CrossRef]
  38. I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3, 201–205 (2009). [CrossRef]
  39. F. Marquardt and S. M. Girvin, “Optomechanics,” Phys. 2, 40 (2009). [CrossRef]
  40. C. Genes, A. Mari, D. Vitali, and P. Tombesi, “Quantum effects in optomechanical systems,” Adv. At., Mol., Opt. Phys. 57, 33–86 (2009). [CrossRef]
  41. K. W. Murch, K. L. Moore, S. Gupta, and D. M. Stamper-Kurn, “Observation of quantum-measurement backaction with an ultracold atomic gas,” Nat. Phys. 4, 561–564 (2008). [CrossRef]
  42. F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, “Cavity optomechanics with a Bose–Einstein condensate,” Science 322, 235–238 (2008). [CrossRef] [PubMed]
  43. I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, “Theory of ground state cooling of a mechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 99, 093901 (2007). [CrossRef] [PubMed]
  44. F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, “Quantum theory of cavity-assisted sideband cooling of mechanical motion,” Phys. Rev. Lett. 99, 093902 (2007). [CrossRef] [PubMed]
  45. C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008). [CrossRef]
  46. J. Zhang, K. Peng, and S. L. Braunstein, “Quantum-state transfer from light to macroscopic oscillators,” Phys. Rev. A 68, 013808 (2003). [CrossRef]
  47. U. Leonhardt, Measuring the Quantum State of Light (Cambridge Univ. Press, 1997).
  48. D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A. Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a movable mirror and a cavity field,” Phys. Rev. Lett. 98, 030405 (2007). [CrossRef] [PubMed]
  49. L.-A. Wu, M. Xiao, and H. J. Kimble, “Squeezed states of light from an optical parametric oscillator,” J. Opt. Soc. Am. B 4, 1465–1475 (1987). [CrossRef]
  50. A. S. Parkins and H. J. Kimble, “Quantum state transfer between motion and light,” J. Opt. B: Quantum Semiclassical Opt. 1, 496–504 (1999). [CrossRef]
  51. M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232–4235 (2000). [CrossRef] [PubMed]
  52. B. Julsgaard, J. Sherson, J. Ignacio Cirac, J. Fiurášek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482–486 (2004). [CrossRef] [PubMed]
  53. P. Grangier, J. A. Levenson, and J.-P. Poizat, “Quantum non-demolition measurements in optics,” Nature 396, 537–542 (1998). [CrossRef]
  54. P. Verlot, A. Tavernarakis, T. Briant, P.-F. Cohadon, and A. Heidmann, “Scheme to probe optomechanical correlations between two optical beams down to the quantum level,” Phys. Rev. Lett. 102, 103601 (2009). [CrossRef] [PubMed]
  55. A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97, 243905 (2006). [CrossRef]
  56. T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98, 150802 (2007). [CrossRef] [PubMed]
  57. J. D. Teufel, J. W. Harlow, C. A. Regal, and K. W. Lehnert, “Dynamical backaction of microwave fields on a nanomechanical oscillator,” Phys. Rev. Lett. 101, 197203 (2008). [CrossRef] [PubMed]
  58. D. J. Wilson, C. A. Regal, S. B. Papp, and H. J. Kimble, “Cavity optomechanics with stoichiometric SiN films,” Phys. Rev. Lett. 103, 207204 (2009). [CrossRef]
  59. A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, “Resolved-sideband cooling of a micromechanical oscillator,” Nat. Phys. 4, 415–419 (2008). [CrossRef]
  60. D. Leibfried, R. Blatt, C. Monroe, and D. Winneland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281–324 (2003). [CrossRef]
  61. S. Stenholm, “The semiclassical theory of laser cooling,” Rev. Mod. Phys. 58, 699–739 (1986). [CrossRef]
  62. I. Tittonen, G. Breitenbach, T. Kalkbrenner, T. Müller, R. Conradt, and S. Schiller, “Interferometric measurements of the position of a macroscopic body: towards observation of quantum limits,” Phys. Rev. A 59, 1038–1044 (1999). [CrossRef]
  63. S. Gröblacher, S. Gigan, H. R. Böhm, A. Zeilinger, and M. Aspelmeyer, “Radiation-pressure self-cooling of a micromirror in a cryogenic environment,” Europhys. Lett. 81, 54003 (2008). [CrossRef]
  64. Lajos Diósi, “Laser linewidth hazard in optomechanical cooling,” Phys. Rev. A 78, 021801(R) (2008). [CrossRef]
  65. P. Rabl, C. Genes, K. Hammerer, and M. Aspelmeyer, “Phase-noise induced limitations on cooling and coherent evolution in optomechanical systems,” Phys. Rev. A 80, 063819 (2009). [CrossRef]
  66. S. Gröblacher, J. B. Hertzberg, M. R. Vanner, G. D. Cole, S. Gigan, K. C. Schwab, and M. Aspelmeyer, “Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity,” Nat. Phys. 5, 485–488 (2009). [CrossRef]
  67. A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, and T. J. Kippenberg, “Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit,” Nat. Phys. 5, 509–514 (2009). [CrossRef]
  68. T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg, A. A. Clerk, and K. C. Schwab, “Preparation and detection of a mechanical resonator near the ground state of motion,” Nature 463, 72–75 (2010). [CrossRef]
  69. G. D. Cole, S. Gröblacher, K. Gugler, S. Gigan, and M. Aspelmeyer, “Monocrystalline AlxGa1−xAs heterostructures for high-reflectivity high-Q micromechanical resonators in the megahertz regime,” Appl. Phys. Lett. 92, 261108 (2008). [CrossRef]
  70. G. Anetsberger, R. Rivière, A. Schliesser, O. Arcizet, and T. J. Kippenberg, “Ultralow-dissipation optomechanical resonators on a chip,” Nat. Photonics 2, 627–633 (2008). [CrossRef]
  71. O. Romero-Isart, M. L. Juan, R. Quidant, and J. Ignacio Cirac, “Towards quantum superposition of living organisms,” New J. Phys. 12, 033015 (2010). [CrossRef]
  72. D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O. Painter, H. J. Kimble, and P. Zoller, “Cavity opto-mechanics using an optically levitated nanosphere,” Proc. Natl. Acad. Sci. U.S.A. 107, 1005–1010 (2010). [CrossRef] [PubMed]
  73. P. F. Barker and M. N. Schneider, “Cavity cooling of a trapped nanoparticle,” Phys. Rev. A 81, 023826 (2010). [CrossRef]
  74. I. Wilson-Rae, P. Zoller, and A. Imamoglu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92, 075507 (2004). [CrossRef] [PubMed]
  75. M. Poggio, C. L. Degen, H. J. Mamin, and D. Rugar, “Feedback cooling of a cantilever’s fundamental mode below 5 mK,” Phys. Rev. Lett. 99(1), 017201 (2007). [CrossRef] [PubMed]
  76. D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444, 75–78 (2006). [CrossRef] [PubMed]
  77. T. Corbitt, C. Wipf, T. Bodiya, D. Ottaway, D. Sigg, N. Smith, S. Whitcomb, and N. Mavalvala, “Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK,” Phys. Rev. Lett. 99, 160801 (2007). [CrossRef] [PubMed]
  78. A. A. Clerk, F. Marquardt, and K. Jacobs, “Back-action evasion and squeezing of a mechanical resonator using a cavity detector,” New J. Phys. 10, 095010 (2008). [CrossRef]
  79. K. Hammerer, M. Aspelmeyer, E. Polzik, and P. Zoller, “Establishing Einstein–Podolsky–Rosen channels between nanomechanics and atomic ensembles,” Phys. Rev. Lett. 102, 020501 (2009). [CrossRef] [PubMed]
  80. W. Marshall, C. Simon, R. Penrose, and D. Bouwmeester, “Towards quantum superpositions of a mirror,” Phys. Rev. Lett. 91, 130401 (2003). [CrossRef] [PubMed]
  81. M. Paternostro, D. Vitali, S. Gigan, M. S. Kim, C. Brukner, J. Eisert, and M. Aspelmeyer, “Creating and probing multipartite macroscopic entanglement with light,” Phys. Rev. Lett. 99, 250401 (2007). [CrossRef]
  82. S. Gröblacher, K. Hammerer, M. R. Vanner, M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009). [CrossRef] [PubMed]
  83. J. M. Dobrindt, I. Wilson-Rae, and T. J. Kippenberg, “Parametric normal-mode splitting in cavity optomechanics and experimentally observed,” Phys. Rev. Lett. 101, 263602 (2008). [CrossRef] [PubMed]
  84. J. Dalibard and C. Cohen-Tannoudji, “Dressed-atom approach to atomic motion in laser light: the dipole force revisited,” J. Opt. Soc. Am. B 2, 1707–1720 (1985). [CrossRef]
  85. S. Haroche and J.-M. Raimond, “Exploring the quantum: atoms, cavities, and photons” (Oxford Graduate Texts, 2006).
  86. U. Akram, N. Kiesel, M. Aspelmeyer, and G. J. Milburn, “Single-photon optomechanics in the strong coupling regime,” arXiv:1002.1517 (2010).
  87. Q. Lin, J. Rosenberg, X. Jiang, K. J. Vahala, and O. Painter, “Mechanical oscillation and cooling actuated by the optical gradient force,” Phys. Rev. Lett. 103, 103601 (2009). [CrossRef] [PubMed]
  88. K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nat. Nanotechnol. 3, 533–537 (2008). [CrossRef] [PubMed]
  89. A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nat. Nanotechnol. 4, 445–450 (2009). [CrossRef] [PubMed]
  90. H. J. Mamin and D. Rugar, “Sub-attonewton force detection at millikelvin temperatures,” Appl. Phys. Lett. 79, 3358 (2001). [CrossRef]
  91. O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J. M. Mackowski, C. Michel, L. Pinard, O. Français, and L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006). [CrossRef] [PubMed]
  92. J. N. Munday, F. Capasso, and V. A. Parsegian, “Measured long-range repulsive Casimir–Lifshitz forces,” Nature 457, 170–173 (2009). [CrossRef] [PubMed]
  93. A. C. Bleszynski-Jayich, W. E. Shanks, B. Peaudecerf, E. Ginossar, F. von Oppen, L. Glazman, and J. G. E. Harris, “Persistent currents in normal metal rings: comparing high-precision experiment with theory,” Science 326, 272–275 (2009). [CrossRef] [PubMed]
  94. A. Mari and J. Eisert, “Gently modulating optomechanical systems,” Phys. Rev. Lett. 103, 213603 (2009). [CrossRef]
  95. K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009). [CrossRef]
  96. P. Rabl, S. J. Kolkowitz, F. H. Koppens, J. G. E. Harris, P. Zoller, and M. D. Lukin, “A quantum spin transducer based on nano electro-mechancial resonator arrays,” arXiv:0908.0316v1 [quant-ph].
  97. A. N. Cleland and M. R. Geller, “Superconducting qubit storage and entanglement with nanomechanical resonators,,” Phys. Rev. Lett. 93, 070501 (2004). [CrossRef] [PubMed]
  98. K. Hammerer, M. Wallquist, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, P. Zoller, J. Ye, and H. J. Kimble, “Strong coupling of a mechanical oscillator and a single atom,” Phys. Rev. Lett. 103, 063005 (2009). [CrossRef] [PubMed]
  99. P. Treutlein, D. Hunger, S. Camerer, T. W. Hänsch, and J. Reichel, “Bose–Einstein condensate coupled to a nanomechanical resonator on an atom chip,” Phys. Rev. Lett. 99, 140403 (2007). [CrossRef] [PubMed]
  100. K. Hammerer, K. Stannigel, C. Genes, P. Zoller, P. Treutlein, S. Camerer, D. Hunger, and T. W. Häensch, “Optical lattices with micromechanical mirrors,” arXiv:1002.4646 (2010).
  101. M. Wallquist, K. Hammerer, P. Zoller, C. Genes, M. Ludwig, F. Marquardt, P. Treutlein, J. Ye, and H. J. Kimble, “Single-atom cavity QED and opto-micromechanics,” Phys. Rev. A 81, 023816 (2010). [CrossRef]
  102. M. Arndt, M. Aspelmeyer, and A. Zeilinger, “How to extend quantum experiments,” Fortschritt der Physik , 57, 1153–1162 (2009). [CrossRef]
  103. A. J. Leggett, “Testing the limits of quantum mechanics: motivation, state of play, prospects,” J. Phys. Condens. Matter 14, R415–R451 (2002). [CrossRef]
  104. W. H. Zurek, “Decoherence and the transition from quantum to classical,” Phys. Today 44, 36–44(1991). [CrossRef]
  105. R. Penrose, “John Bell, state reduction and quanglement,” in: “Quantum [un]speakables: from Bell to quantum information,” R.A.Bertlmann and A.Zeilinger, eds. (Springer, 2000) pp. 319–330.
  106. L. Diósi, “Emergence of classicality: from collapse phenomenologies to hybrid dynamics,” Lect. Notes Phys. 538, 243–250 (2000), [CrossRef]
  107. S. L. Adler and A. Bassi, “Quantum theory: exact or approximate?,” Science 325, 275–276 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited