OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 6 — Jun. 1, 2010
  • pp: A198–A207

Continuous-variable entanglement purification with atomic systems

Stojan Rebic, Stefano Mancini, Giovanna Morigi, and David Vitali  »View Author Affiliations

JOSA B, Vol. 27, Issue 6, pp. A198-A207 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (731 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a proposal for entanglement purification of the continuous-variable quantum state of two propagating optical fields. The scheme is based on each field interacting with a local node-atomic ensemble whose internal collective excitation plays the role of an ancillary continuous-variable resource. Entanglement purification is achieved by a dichotomic measurement, representing the required non-Gaussian element, which consists of detecting the presence or absence of collective excitations in the atomic ensemble. This scheme can be extended to networks, where the nodes are single trapped atoms, and constitutes an important building block for the implementation of a continuous-variable quantum repeater.

© 2010 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.6570) Quantum optics : Squeezed states
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Continuous Variables

Original Manuscript: December 14, 2009
Revised Manuscript: March 16, 2010
Manuscript Accepted: April 16, 2010
Published: May 28, 2010

Stojan Rebic, Stefano Mancini, Giovanna Morigi, and David Vitali, "Continuous-variable entanglement purification with atomic systems," J. Opt. Soc. Am. B 27, A198-A207 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009). [CrossRef]
  2. S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005). [CrossRef]
  3. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996). [CrossRef] [PubMed]
  4. J. Eisert, S. Scheel, and M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89, 137903 (2002). [CrossRef] [PubMed]
  5. D. E. Browne, J. Eisert, S. Scheel, and M. B. Plenio, “Driving non-Gaussian to Gaussian states with linear optics,” Phys. Rev. A 67, 062320 (2003). [CrossRef]
  6. H. Zeng and F. Lin, “Quantum conversion between the cavity fields and the center-of-mass motion of ions in a quantized trap,” Phys. Rev. A 50, R3589–R3592 (1994). [CrossRef] [PubMed]
  7. A. S. Parkins and H. J. Kimble, “Quantum state transfer between motion and light,” J. Opt. B: Quantum Semiclassical Opt. 1, 496–504 (1999). [CrossRef]
  8. G. Morigi, J. Eschner, S. Mancini, and D. Vitali, “Entangled light pulses from single cold atoms,” Phys. Rev. Lett. 96, 023601 (2006). [CrossRef] [PubMed]
  9. G. Morigi, J. Eschner, S. Mancini, and D. Vitali, “Coherent generation of EPR-entangled light pulses mediated by a single trapped atom,” Phys. Rev. A 73, 033822 (2006). [CrossRef]
  10. D. Vitali, P. Cañizares, J. Eschner, and G. Morigi, “Time-separated entangled light pulses from a single-atom emitter,” New J. Phys. 10, 033025 (2008). [CrossRef]
  11. J. Eschner, G. Morigi, F. Schmidt-Kaler, and R. Blatt, “Laser cooling of trapped ions,” J. Opt. Soc. Am. B 20, 1003–1015 (2003). [CrossRef]
  12. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. 96, 010401 (2006). [CrossRef] [PubMed]
  13. L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long- distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001). [CrossRef] [PubMed]
  14. L.-M. Duan, J. I. Cirac, and P. Zoller, “Three-dimensional theory for interaction between atomic ensembles and free-space light,” Phys. Rev. A 66, 023818 (2002). [CrossRef]
  15. T. Holstein and H. Primakoff, “Field dependence of the intrinsic domain magnetization of a ferromagnet,” Phys. Rev. 58, 1098–1113 (1940). [CrossRef]
  16. B. Julsgaard, A. Kozhekin, and E. S. Polzik, “Experimental long-lived entanglement of two macroscopic objects,” Nature 413, 400–403 (2001). [CrossRef] [PubMed]
  17. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light,” Nature 409, 490–493 (2001). [CrossRef] [PubMed]
  18. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001). [CrossRef] [PubMed]
  19. M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232–4235 (2000). [CrossRef] [PubMed]
  20. M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000). [CrossRef] [PubMed]
  21. See, for instance, Ch. Simon, M. Afzelius, J. Appel, A. Boyer de la Giroday, S. J. Dewhurst, N. Gisin, C. Y. Hu, F. Jelezko, S. Kroll, J. H. Muller, J. Nunn, E. Polzik, J. Rarity, H. de Riedmatten, W. Rosenfeld, A. J. Shields, N. Skold, R. M. Stevenson, R. Thew, I. Walmsley, M. Weber, H. Weinfurter, J. Wrachtrup, and R. J. Young, “Quantum memories: a review based on the European Integrated Project ‘Qubit Applications (QAP)’,” Eur. Phys. J. D 58, 1–22 (2010). [CrossRef]
  22. K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452, 67–71 (2008). [CrossRef] [PubMed]
  23. D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, “Quantum dynamics of single trapped ions,” Rev. Mod. Phys. 75, 281–324 (2003). [CrossRef]
  24. A. Imamoglu, “High efficiency photon counting using stored light,” Phys. Rev. Lett. 89, 163602 (2002). [CrossRef] [PubMed]
  25. D. F. V. James and P. G. Kwiat, “Atomic vapor-based high efficiency optical detectors with photon number resolution,” Phys. Rev. Lett. 89, 183601 (2002). [CrossRef] [PubMed]
  26. S. Pirandola, S. Mancini, D. Vitali, and P. Tombesi, “Continuous-variable entanglement and quantum-state teleportation between optical and macroscopic vibrational modes through radiation pressure,” Phys. Rev. A 68, 062317 (2003). [CrossRef]
  27. D. F. Walls and G. J. Milburn, Quantum Optics, 2nd ed. (Springer, 2008). [CrossRef]
  28. S. Olivares, M. G. A. Paris, and R. Bonifacio, “Teleportation improvement by inconclusive photon subtraction,” Phys. Rev. A 67, 032314 (2003). [CrossRef]
  29. S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869–872 (1998). [CrossRef]
  30. A. Furusawa, J. Sorensen, S. L. Braunstein, C. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998). [CrossRef] [PubMed]
  31. S. Pirandola and S. Mancini, “Quantum teleportation with continuous variables: a survey,” Laser Phys. 16, 1418–1438 (2006). [CrossRef]
  32. K. E. Cahill and R. J. Glauber, “Density operators and quasiprobability distributions,” Phys. Rev. 177, 1882–1902 (1969). [CrossRef]
  33. G. Adesso and F. Illuminati, “Continuous variable tangle, monogamy inequality, and entanglement sharing in Gaussian states of continuous variable systems,” New J. Phys. 8, 15 (2006). [CrossRef]
  34. A. Kitagawa, M. Takeoka, M. Sasaki, and A. Chefles, “Entanglement evaluation of non-Gaussian states generated by photon subtraction from squeezed states,” Phys. Rev. A 73, 042310 (2006). [CrossRef]
  35. H. Takahashi, J. S. Neergaard-Nielsen, M. Takeuchi, M. Takeoka, K. Hayasaka, A. Furusawa, and M. Sasaki, “Entanglement distillation from Gaussian input states,” Nat. Photonics 4, 178–181 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited