OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 6 — Jun. 1, 2010
  • pp: A7–A10

Single-photon spin–orbit entanglement violating a Bell-like inequality

Lixiang Chen and Weilong She  »View Author Affiliations


JOSA B, Vol. 27, Issue 6, pp. A7-A10 (2010)
http://dx.doi.org/10.1364/JOSAB.27.0000A7


View Full Text Article

Enhanced HTML    Acrobat PDF (328 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Single photons emerging from Pancharatnam–Berry phase optical elements (q plates) exhibit entanglement in the degrees of freedom of spin and orbital angular momentum. We put forward an experimental scheme for probing the spin–orbit correlations of single photons. It is found that the Clauser–Horne–Shimony–Holt parameter S for the single-photon spin–orbit entangled state could be as high as 2 2 , evidently violating the Bell-like inequality and thus invalidating the noncontextual hidden variable theories.

© 2010 Optical Society of America

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Entanglement in Photonic Systems

History
Original Manuscript: November 3, 2009
Manuscript Accepted: November 28, 2009
Published: January 22, 2010

Citation
Lixiang Chen and Weilong She, "Single-photon spin-orbit entanglement violating a Bell-like inequality," J. Opt. Soc. Am. B 27, A7-A10 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-6-A7


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185-8189 (1992). [CrossRef] [PubMed]
  2. S. Franke-Arnold, L. Allen, and M. Padgett, “Advances in optical angular momentum,” Laser Photonics Rev. 2, 299-313 (2008). [CrossRef]
  3. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3, 305-310 (2007). [CrossRef]
  4. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006). [CrossRef] [PubMed]
  5. G. F. Calvo and A. Picon, “Spin-induced angular momentum switching,” Opt. Lett. 32, 838-840 (2007). [CrossRef] [PubMed]
  6. E. Karimi, B. Piccirillo, L. Marrucci, and E. Santamato, “Light propagation in a birefringent plate with topological charge,” Opt. Lett. 34, 1225-1227 (2009). [CrossRef] [PubMed]
  7. E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94, 231124 (2009). [CrossRef]
  8. E. Nagali, F. Sciarrino, F. De Martini, B. Piccirillo, E. Karimi, L. Marrucci, and E. Santamato, “Polarization control of single photon quantum orbital angular momentum states,” Opt. Express 17, 18745-18759 (2009). [CrossRef]
  9. Y. Zhao, J. S. Edgar, G. D. M. Jeffries, D. McGloin, and D. T. Chiu, “Spin-to-orbital angular momentum conversion in a strongly focused optical beam,” Phys. Rev. Lett. 99, 073901 (2007). [CrossRef] [PubMed]
  10. L. Chen and W. She, “Electro-optically forbidden or enhanced spin-to-orbital angular momentum conversion in a focused light beam,” Opt. Lett. 33, 696-698 (2008). [CrossRef] [PubMed]
  11. L. Deng, H. Wang, and K. Wang, “Quantum CNOT gates with orbital angular momentum and polarization of single-photon quantum logic,” J. Opt. Soc. Am. B 24, 2517-2520 (2007). [CrossRef]
  12. J. C. Howell and J. A. Yeazell, “Quantum computation through entangling single photons in multipath interferometers,” Phys. Rev. Lett. 85, 198-201 (2000). [CrossRef] [PubMed]
  13. B. G. Englert, C. Kurtsiefer, and H. Weinfurter, “Universal unitary gate for single-photon two-qubit states,” Phys. Rev. A 63, 032303 (2001). [CrossRef]
  14. M. Fiorentino and F. N. C. Wong, “Deterministic controlled-NOT gate for single-photon two-qubit quantum logic,” Phys. Rev. Lett. 93, 070502 (2004). [CrossRef] [PubMed]
  15. A. Beige, B. G. Englert, C. Kurtsiefer, and H. Weinfurter, “Secure communication with single-photon two-qubit states,” J. Phys. A 35, L407-L413 (2002). [CrossRef]
  16. B. G. Englert, “Remark on some basic issues in quantum mechanics,” Z. Naturforsch. 54a, 11-32 (1999).
  17. S. J. van Enk, “Single-particle entanglement,” Phys. Rev. A 72, 064306 (2005). [CrossRef]
  18. S. Basu, S. Bandyopadhyay, G. Kar, and D. Home, “Bell's inequality for a single spin-1/2 particle and quantum contextuality,” Phys. Lett. A 279, 281-286 (2001). [CrossRef]
  19. M. Michler, H. Weinfurter, and M. Zukowski, “Experiments towards falsification of noncontextual hidden variable theories,” Phys. Rev. Lett. 84, 5457-5461 (2000). [CrossRef] [PubMed]
  20. B. R. Gadway, E. J. Galvez, and F. De Zela, “Bell-inequality violations with single-photons entangled in momentum and polarization,” J. Phys. B At. Mol. Opt. Phys. 42, 015503 (2009). [CrossRef]
  21. Y. Hasegawa, R. Loidl, G. Badurek, M. Baron, and H. Rauch, “Violation of a Bell-like inequality in single-neutron interferometry,” Nature 425, 45-48 (2003). [CrossRef] [PubMed]
  22. S. Pancharatnam, “Generalized theory of interference, and its applications,” Proc. Indian Acad. Sci., Sect. A 44, 247-262 (1956).
  23. M. V. Berry, “The adiabatic phase and the pancharatnam phase for polarized-light,” J. Mod. Opt. 34, 1401-1407 (1987). [CrossRef]
  24. L. Chen and W. She, “Sorting photons of different rotational Doppler shifts (RDS) by orbital angular momentum of single-photon with spin-orbit-RDS entanglement,” Opt. Express 16, 14629-14634 (2008). [CrossRef] [PubMed]
  25. L. Chen and W. She, “Increasing Shannon dimensionality by hyperentanglement of spin and fractional orbital angular momentum,” Opt. Lett. 34, 1855-1857 (2009). [CrossRef] [PubMed]
  26. E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Quantum information transfer from spin to orbital angular momentum of photons,” Phys. Rev. Lett. 103, 013601 (2009). [CrossRef] [PubMed]
  27. E. Nagali, L. Sansoni, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, and E. Santamato, “Optimal quantum cloning of orbital angular momentum photon qubits through Hong-Ou-Mandel coalescence,” Nat. Photonics 3, 720-723 (2009). [CrossRef]
  28. L. Marrucci, “Rotating light with light: generation of helical modes of light by spin-to-orbital angular momentum conversion in inhomogeneous liquid crystals,” Proc. SPIE 6587, 658708 (2007). [CrossRef]
  29. J. Leach, B. Jack, J. Romero, M. Ritsch-Marte, R. W. Boyd, A. K. Jha, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Violation of a Bell inequality in two-dimensional orbital angular momentum state-spaces,” Opt. Express 17, 8287-8293 (2009). [CrossRef] [PubMed]
  30. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313-316 (2001). [CrossRef] [PubMed]
  31. J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92, 013601 (2004). [CrossRef] [PubMed]
  32. S. M. Roy and V. Singh, “Quantum violation of stochastic noncontextual hidden-variable theories,” Phys. Rev. A 48, 3379-3381 (1993). [CrossRef] [PubMed]
  33. J. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880-884 (1969). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited