OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 7 — Jul. 1, 2010
  • pp: 1325–1331

Polarization optics analogy of quantum wavefunctions in graphene

D. Dragoman  »View Author Affiliations


JOSA B, Vol. 27, Issue 7, pp. 1325-1331 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001325


View Full Text Article

Enhanced HTML    Acrobat PDF (176 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Detailed similarities between polarization states of light and ballistic charge carriers in graphene are derived. Based on these, the optical equivalent of quantum wavefunctions, the Dirac equation, and the effect of an electrostatic potential are found, and the quantum analogs of the refractive index of light and of the optical composition law of reflection coefficients are obtained. The differences between the behaviors of quantum wavefunctions in graphene and electromagnetic fields, due to the chiral symmetry of ballistic charge carriers that cannot be mimicked in classical polarization optics, are also evidenced.

© 2010 Optical Society of America

OCIS Codes
(160.0160) Materials : Materials
(260.0260) Physical optics : Physical optics
(260.5430) Physical optics : Polarization
(160.4236) Materials : Nanomaterials

ToC Category:
Physical Optics

History
Original Manuscript: March 18, 2010
Revised Manuscript: April 21, 2010
Manuscript Accepted: April 28, 2010
Published: June 7, 2010

Citation
D. Dragoman, "Polarization optics analogy of quantum wavefunctions in graphene," J. Opt. Soc. Am. B 27, 1325-1331 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-7-1325


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. N. Henderson, T. K. Gaylord, and E. N. Glytsis, “Ballistic electron transport in semiconductor heterostructures and its analogies in electromagnetic propagation in general dielectrics,” Proc. IEEE 79, 1643–1659 (1991). [CrossRef]
  2. D. Dragoman and M. Dragoman, “Optical analogue structures to mesoscopic devices,” Prog. Quantum Electron. 23, 131–188 (1999). [CrossRef]
  3. D. Dragoman and M. Dragoman, Quantum-Classical Analogies (Springer, 2004).
  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306, 666–669 (2004). [CrossRef] [PubMed]
  5. N. M. R. Peres, “The transport properties of graphene,” J. Phys. Condens. Matter 21, 323201 (2009). [CrossRef] [PubMed]
  6. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81, 109–162 (2009). [CrossRef]
  7. A. V. Shytov, M. S. Rudner, and L. S. Levitov, “Klein backscattering and Fabry–Perot interference in graphene heterojunctions,” Phys. Rev. Lett. 101, 156804 (2008). [CrossRef] [PubMed]
  8. D. Dragoman and M. Dragoman, “Giant thermoelectric effect in graphene,” Appl. Phys. Lett. 91, 203116 (2007). [CrossRef]
  9. S. Ghosh and M. Sharma, “Electron optics with magnetic vector potential barriers in graphene,” J. Phys. Condens. Matter 21, 292204 (2009). [CrossRef] [PubMed]
  10. C. W. J. Beenakker, R. A. Sepkhanov, A. R. Akhmerov, and J. Tworzydło, “Quantum Goos–Hänchen effect in graphene,” Phys. Rev. Lett. 102, 146804 (2009). [CrossRef] [PubMed]
  11. S. Datta and B. Das, “Electronic analog of the electro-optic modulator,” Appl. Phys. Lett. 56, 665–667 (1990). [CrossRef]
  12. M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, “Chiral tunnelling and the Klein paradox in graphene,” Nat. Phys. 2, 620–625 (2006). [CrossRef]
  13. O. V. Angelsky, N. N. Dominikov, P. P. Maksimyak, and T. Tudor, “Experimental revealing of polarization waves,” Appl. Opt. 38, 3112–3117 (1999). [CrossRef]
  14. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Spatial Fourier-transform polarimetry using space-variant subwavelength metal-stripe polarizers,” Opt. Lett. 26, 1711–1713 (2001). [CrossRef]
  15. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).
  16. S. Jiao, W. Yu, G. Stoica, and L. V. Wang, “Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging,” Appl. Opt. 42, 5191–5197 (2003). [CrossRef] [PubMed]
  17. A. Y.-G. Fuh, C.-R. Lee, and K.-T. Cheng, “Fast optical recording of polarization holographic grating based on an azo-dye-doped polymer-ball-type polymer-dispersed liquid crystal film,” Jpn. J. Appl. Phys., Part 1 42, 4406–4410 (2003). [CrossRef]
  18. H. Kawaguchi, “Polarization-bistable vertical-cavity surface-emitting lasers: application for optical bit memory,” Opto-Electron. Rev. 17, 265–274 (2009). [CrossRef]
  19. H. Kuratsuji and S. Kakigi, “Maxwell–Schrödinger equation for polarized light and evolution of the Stokes parameters,” Phys. Rev. Lett. 80, 1888–1891 (1998). [CrossRef]
  20. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).
  21. R. J. Potton, “Reciprocity in optics,” Rep. Prog. Phys. 67, 717–754 (2004). [CrossRef]
  22. A. Yariv and P. Yeh, Photonics, 6th ed. (Oxford U. Press, 2007).
  23. B. Bêche and E. Gaviot, “Matrix formalism to enhance the concept of effective dielectric constant,” Opt. Commun. 219, 15–19 (2003). [CrossRef]
  24. V. V. Cheianov, V. Fal’ko, and B. L. Altshuler, “The focusing of electron flow and a Veselago lens in graphene p-n junctions,” Science 315, 1252–1255 (2007). [CrossRef] [PubMed]
  25. D. Dragoman, “Evidence against Klein paradox in graphene,” Phys. Scr. 79, 015003 (2009). [CrossRef]
  26. J. Cserti, A. Pályi, and C. Péterfalvi, “Caustics due to a negative refractive index in circular graphene p-n junctions,” Phys. Rev. Lett. 99, 246801 (2007). [CrossRef]
  27. J. M. Vigoureux, “Use of Einstein’s addition law in studies of reflection by stratified planar structures,” J. Opt. Soc. Am. A 9, 1313–1319 (1992). [CrossRef]
  28. Ph. Grossel and J.-M. Vigoureux, “Calculation of wave functions and of energy levels: application to multiple quantum wells and continuous potential,” Phys. Rev. A 55, 796–799 (1997). [CrossRef]
  29. J. J. Monzón and L. L. Sánchez-Soto, “Fully relativisticlike formulation of multilayer optics,” J. Opt. Soc. Am. A 16, 2013–2018 (1999). [CrossRef]
  30. B. Tom King, “Reflection optics, an Einstein addition law for nonparallel boosts, and the geometric algebra of space-time,” J. Opt. Soc. Am. A 12, 773–779 (1995). [CrossRef]
  31. D. Han, Y. S. Kim, and M. E. Noz, “Jones-matrix formalism as a representation of the Lorentz group,” J. Opt. Soc. Am. A 14, 2290–2298 (1997). [CrossRef]
  32. D. Han, Y. S. Kim, and M. E. Noz, “Stokes parameters as a Minkowskian four-vector,” Phys. Rev. E 56, 6065–6076 (1997). [CrossRef]
  33. D. Han, Y. S. Kim, and M. E. Noz, “Wigner rotations and Iwasawa decompositions in polarization optics,” Phys. Rev. E 60, 1036–1041 (1999). [CrossRef]
  34. S. Başkal, E. Georgieva, Y. S. Kim, and M. E. Noz, “Lorentz group in classical ray optics,” J. Opt. B: Quantum Semiclassical Opt. 6, S455–S472 (2004). [CrossRef]
  35. A. Shytov, M. Rudner, N. Gu, M. Katsnelson, and L. Levitov, “Atomic collapse, Lorentz boosts, Klein scattering, and other quantum-relativistic phenomena in graphene,” Solid State Commun. 149, 1087–1093 (2009). [CrossRef]
  36. J.-M. Vigoureux and D. van Labeke, “A geometric phase in optical multilayers,” J. Mod. Opt. 45, 2409–2416 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited