OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 7 — Jul. 1, 2010
  • pp: 1359–1363

Self-collimating polarization beam splitter based on photonic crystal Mach–Zehnder interferometer

Yi Xu, Shun Wang, Sheng Lan, Xu-Sheng Lin, Qi Guo, and Li-Jun Wu  »View Author Affiliations

JOSA B, Vol. 27, Issue 7, pp. 1359-1363 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (518 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Due to different boundary continuity conditions, electromagnetic waves with transverse-magnetic and transverse-electric polarizations respond differently when they encounter dielectric interfaces. Based on this mechanism, we propose a self-collimating polarization beam splitter (PBS) constructed on a polarization-insensitive self-collimation photonic crystal. The splitting is realized on a Mach–Zehnder interferometer (MZI), through which the two polarizations can be separated by 90° with low cross talk. Both polarizations are self-collimated to eliminate the diffraction loss during the propagation. Furthermore, the out-of-plane scattering loss is suppressed since the PBS is operated in the first band. The wavelength bandwidth of the MZI-based PBS reaches about 100 nm at 1550 nm. Finally, the influences of interfaces on the performance of the PBS are discussed.

© 2010 Optical Society of America

OCIS Codes
(230.1360) Optical devices : Beam splitters
(230.5440) Optical devices : Polarization-selective devices
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Optical Devices

Original Manuscript: December 17, 2009
Revised Manuscript: May 10, 2010
Manuscript Accepted: May 10, 2010
Published: June 11, 2010

Yi Xu, Shun Wang, Sheng Lan, Xu-Sheng Lin, Qi Guo, and Li-Jun Wu, "Self-collimating polarization beam splitter based on photonic crystal Mach–Zehnder interferometer," J. Opt. Soc. Am. B 27, 1359-1363 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. M. Garner, V. Chuyanov, S. Lee, A. Chen, W. H. Steier, and L. R. Dalton, “Vertically integrated waveguide polarization splitters using polymers,” IEEE Photon. Technol. Lett. 11, 842–844 (1999). [CrossRef]
  2. L. Wu, M. Mazilu, J. F. Gallet, T. F. Krauss, A. Jugessur, and R. M. De La Rue, “Planar photonic crystal polarization splitter,” Opt. Lett. 29, 1620–1622 (2004). [CrossRef] [PubMed]
  3. X. Ao and S. He, “Polarization beam splitters based on a two-dimensional photonic crystal of negative refraction,” Opt. Lett. 30, 2152–2154 (2005). [CrossRef] [PubMed]
  4. X. Ao, L. Liu, L. Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006). [CrossRef]
  5. E. Schonbrun, Q. Wu, W. Park, T. Yamashita, and C. J. Summers, “Polarization beam splitter based on a photonic crystal heterostructure,” Opt. Lett. 31, 3104–3106 (2006). [CrossRef] [PubMed]
  6. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakamib, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999). [CrossRef]
  7. J. Witzens, M. Loncar, and A. Schere, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002). [CrossRef]
  8. L. Wu, M. Mazilu, and T. F. Krauss, “Beam steering in planar-photonic crystals: From superprism to supercollimator,” J. Lightwave Technol. 21, 561–566 (2003). [CrossRef]
  9. D. W. Prather, S. Shi, D. M. Pustai, C. Chen, S. Venkataraman, A. Sharkawy, G. J. Schneider, and J. Murakowski, “Dispersion-based optical routing in photonic crystals,” Opt. Lett. 29, 50–52 (2004). [CrossRef] [PubMed]
  10. V. Zabelin, L. A. Dunbar, N. Le. Thomas, R. Houdré, M. V. Kotlyar, L. O’Faolain, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett. 32, 530–532 (2007). [CrossRef] [PubMed]
  11. Y. Xu, X. Chen, S. Lan, Q. Dai, Q. Guo, and L. Wu, “Polarization-independent self-collimation based on pill-void photonic crystals with square symmetry,” Opt. Express 17, 4903–4912 (2009). [CrossRef] [PubMed]
  12. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995). [CrossRef]
  13. D. Zhao, J. Zhang, P. Yao, X. Jiang, and X. Chen, “Photonic crystal Mach–Zehnder interferometer based on self-collimation,” Appl. Phys. Lett. 90, 231114 (2007). [CrossRef]
  14. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef] [PubMed]
  15. X. Yu and S. Fan, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251–3253 (2003). [CrossRef]
  16. S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996). [CrossRef]
  17. D. Deng, “Nonparaxial propagation of radially polarized light beams,” J. Opt. Soc. Am. B 23, 1228–1234 (2006). [CrossRef]
  18. H. A. Haus, Wave and Fields in Optoelectronics (Prentice-Hall, 1984).
  19. Y. A. Vlasov and S. J. McNab, “Coupling into the slow light mode in slab-type photonic crystal waveguides,” Opt. Lett. 31, 50–52 (2006). [CrossRef] [PubMed]
  20. S.-G. Lee, J.-s. Choi, J.-E. Kim, H.-Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16, 4270–4277 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited