OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 7 — Jul. 1, 2010
  • pp: 1364–1380

Analysis of photonic crystal defect modes by maximal symmetrization and reduction

B. Gallinet, J. Kupec, B. Witzigmann, and M.-A. Dupertuis  »View Author Affiliations


JOSA B, Vol. 27, Issue 7, pp. 1364-1380 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001364


View Full Text Article

Enhanced HTML    Acrobat PDF (643 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We analyze in depth the eigenmodes symmetry of the vectorial electromagnetic wave equation with discrete symmetry, using a recently developed maximal symmetrization and reduction scheme leading to an automatic technique which decomposes every mode into its most fundamental internal geometrical components carrying independent symmetries, the ultimately reduced component functions (URCFs). Using URCFs, geometrical properties of photonic crystal defect modes can be analyzed in great details. In particular we analytically identify the kind of modes that display non-vanishing transverse electric or transverse magnetic amplitude at the cavity center in C 2 v , C 3 v , C 4 v , and C 6 v symmetries, and their degeneracies. We also build a postprocessing tool able to extract and identify URCFs out of the modes whether from experimental or numerical origin. In the latter case it is independent of the eigenmode computation method. In another variant the whole eigenmode computation can be systematically reduced to a minimal domain, without any need for applying specific non-trivial boundary conditions. The approach leads to strong analytical predictions which are illustrated for specific H 1 and L 3 cavities using the postprocessing tool on full three-dimensional computed modes. It not only constitutes an unprecedented check of the symmetry of the computational results, but it is shown to also deliver a deep geometrical and physical insight into the structure of the modes of photonic bandgap microcavities, which is of direct use for most modern applications in quantum photonics.

© 2010 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(140.3945) Lasers and laser optics : Microcavities
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: December 18, 2009
Revised Manuscript: April 7, 2010
Manuscript Accepted: April 26, 2010
Published: June 17, 2010

Citation
B. Gallinet, J. Kupec, B. Witzigmann, and M.-A. Dupertuis, "Analysis of photonic crystal defect modes by maximal symmetrization and reduction," J. Opt. Soc. Am. B 27, 1364-1380 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-7-1364


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater. 4, 207–210 (2005). [CrossRef]
  2. P. Boucaud, M. El Kurdi, S. David, X. Checoury, X. Li, T. P. Ngo, S. Sauvage, D. Bouchier, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, T. Akatsu, C. Richtarch, and B. Ghyselen, “Germanium-based nanophotonic devices: two-dimensional photonic crystals and cavities,” Thin Solid Films 517, 121–124 (2008). [CrossRef]
  3. M. El Kurdi, S. David, X. Checoury, G. Fishman, P. Boucaud, O. Kermarrec, D. Bensahel, and B. Ghyselen, “Two-dimensional photonic crystals with pure germanium-on-insulator,” Opt. Commun. 281, 846–850 (2008). [CrossRef]
  4. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999). [CrossRef] [PubMed]
  5. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003). [CrossRef] [PubMed]
  6. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004). [CrossRef] [PubMed]
  7. N. Mattiucci, G. D’Aguanno, M. Scalora, and M. Bloemer, “Cross-phase modulation in one-dimensional photonic crystals: applications to all-optical devices,” Appl. Phys. B 81, 389–391 (2005). [CrossRef]
  8. B. Acklin, M. Cada, J. He, and M.-A. Dupertuis, “Bistable switching in a nonlinear Bragg reflector,” Appl. Phys. Lett. 63, 2177–2179 (1993). [CrossRef]
  9. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vuckovic, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005). [CrossRef] [PubMed]
  10. W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006). [CrossRef] [PubMed]
  11. D. Englund, A. Faraon, B. Y. Zhang, Y. Yamamoto, and J. Vuckovic, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express 15, 5550–5558 (2007). [CrossRef] [PubMed]
  12. K. Aoki, D. Guimard, M. Nishioka, M. Nomura, S. Iwamoto, and Y. Arakawa, “Coupling of quantum-dot light emission with a three-dimensional photonic-crystal nanocavity,” Nat. Photonics 2, 688–692 (2008). [CrossRef]
  13. D. Englund, A. Majumdar, A. Faraon, M. Toishi, N. Stoltz, P. Petroff, and J. Vučković, “Resonant excitation of a quantum dot strongly coupled to a photonic crystal nanocavity,” Phys. Rev. Lett. 104, 073904 (2010). [CrossRef] [PubMed]
  14. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2005).
  15. M. Okano and S. Noda, “Analysis of multimode point-defect cavities in three-dimensional photonic crystals using group theory in frequency and time domains,” Phys. Rev. B 70, 125105 (2004). [CrossRef]
  16. W. Kuang, J. R. Cao, T. Yang, S. J. Choi, P. T. Lee, J. D. O’Brien, and P. D. Dapkus, “Classification of modes in suspended-membrane, 19-missing-hole photonic-crystal microcavities,” J. Opt. Soc. Am. B 22, 1092–1099 (2005). [CrossRef]
  17. J. D. Joannopoulos, P. R. Villeneuve, and S. H. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997). [CrossRef]
  18. S. Mahmoodian, R. C. McPhedran, C. M. de Sterke, K. B. Dossou, C. G. Poulton, and L. C. Botten, “Single and coupled degenerate defect modes in two-dimensional photonic crystal band gaps,” Phys. Rev. A 79, 013814 (2009). [CrossRef]
  19. S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3, 4–11 (1998). [CrossRef] [PubMed]
  20. B. K. Min, J. E. Kim, and H. Y. Park, “Channel drop filters using resonant tunneling processes in two-dimensional triangular lattice photonic crystal slabs,” Opt. Commun. 237, 59–63 (2004). [CrossRef]
  21. Y. Akahane, T. Asano, H. Takano, B. S. Song, Y. Takana, and S. Noda, “Two-dimensional photonic-crystal-slab channel-drop filter with flat-top response,” Opt. Express 13, 2512–2530 (2005). [CrossRef] [PubMed]
  22. R. Johne, N. A. Gippius, G. Pavlovic, D. D. Solnyshkov, I. A. Shelykh, and G. Malpuech, “Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity,” Phys. Rev. Lett. 100, 240404 (2008). [CrossRef] [PubMed]
  23. M. Larqué, T. Karle, I. Robert-Philip, and A. Beveratos, “Optimizing h1 cavities for the generation of entangled photon pairs,” New J. Phys. 11, 033022 (2009). [CrossRef]
  24. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459, 550–555 (2009). [CrossRef] [PubMed]
  25. O. Painter and K. Srinivasan, “Localized defect states in two-dimensional photonic crystal slab waveguides: a simple model based upon symmetry analysis,” Phys. Rev. B 68, 035110 (2003). [CrossRef]
  26. S. H. Kim and Y. H. Lee, “Symmetry relations of two-dimensional photonic crystal cavity modes,” IEEE J. Quantum Electron. 39, 1081–1085 (2003). [CrossRef]
  27. S. Dalessi and M.-A. Dupertuis, “Maximal symmetrization and reduction of fields: application to wave functions in solid state nanostructures,” Phys. Rev. B 81, 125106 (2010). [CrossRef]
  28. B. Gallinet, M.-A. Dupertuis, and F. Reuse are preparing a manuscript to be called “Spatial domain reduction: a systematic approach of symmetry effects in nanostructures and photonic band-gap microcavities.”
  29. J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, 1994).
  30. S. L. Altmann and P. Herzig, Point-Group Theory Tables (Clarendon, 1994).
  31. F. Römer, B. Witzigmann, O. Chinellato, and P. Arbenz, “Investigation of the Purcell effect in photonic crystal cavities with a 3D finite element Maxwell solver,” Opt. Quantum Electron. 39, 341–352 (2007). [CrossRef]
  32. F. Römer and B. Witzigmann, “Spectral and spatial properties of the spontaneous emission enhancement in photonic crystal cavities,” J. Opt. Soc. Am. B 25, 31–39 (2008). [CrossRef]
  33. J. Vuckovic, D. Englund, D. Fattal, E. Waks, and Y. Yamamoto, “Generation and manipulation of nonclassical light using photonic crystals,” Physica E (Amsterdam) 32, 466–470 (2006). [CrossRef]
  34. I. Fushman, D. Englund, A. Faraon, N. Stolz, P. Petroff, and J. Vuckovic, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008). [CrossRef] [PubMed]
  35. M. Belotti, J. F. Galisteo-Lopez, S. De Angelis, M. Galli, I. Maksymov, L. C. Andreani, D. Peyrade, and Y. Chen, “All-optical switching in 2D silicon photonic crystals with low loss waveguides and optical cavities,” Opt. Express 16, 11624–11636 (2008). [PubMed]
  36. S. H. Kim, S. K. Kim, and Y. H. Lee, “Vertical beaming of wavelength-scale photonic crystal resonators,” Phys. Rev. B 73, 235117 (2006). [CrossRef]
  37. S. K. Kim, G. H. Kim, S. H. Kim, Y. H. Lee, S. B. Kim, and I. Kim, “Loss management using parity-selective barriers for single-mode, single-cell photonic crystal resonators,” Appl. Phys. Lett. 88, 161119 (2006). [CrossRef]
  38. K. F. Karlsson, M. A. Dupertuis, D. Y. Oberli, E. Pelucchi, A. Rudra, P. O. Holtz, and E. Kapon, “Fine structure of exciton complexes in high symmetry quantum dots: symmetry breaking and symmetry elevation” Phys. Rev. B 81161307 (2010). [CrossRef]
  39. A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited