OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 7 — Jul. 1, 2010
  • pp: 1388–1393

Fiber-comb-stabilized light source at 556 nm for magneto-optical trapping of ytterbium

Masami Yasuda, Takuya Kohno, Hajime Inaba, Yoshiaki Nakajima, Kazumoto Hosaka, Atsushi Onae, and Feng-Lei Hong  »View Author Affiliations


JOSA B, Vol. 27, Issue 7, pp. 1388-1393 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001388


View Full Text Article

Enhanced HTML    Acrobat PDF (498 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A frequency-stabilized light source emitting at 556 nm is realized by frequency doubling a 1112 nm laser, which is phase locked to a fiber-based optical frequency comb. The 1112 nm laser is either an ytterbium (Yb)-doped distributed feedback fiber laser or a master-slave laser system that uses an external cavity diode laser as a master laser. We have achieved the continuous frequency stabilization of the light source over a 5 day period. With the light source, we have completed the second-stage magneto-optical trapping (MOT) of Yb atoms using the S 1 0 P 3 1 intercombination transition. The temperature of the ultracold atoms in the MOT was 40 μ K when measured using the time-of-flight method, and this is sufficient for loading the atoms into an optical lattice. The fiber-based frequency comb is shown to be a useful tool for controlling the laser frequency in cold-atom experiments.

© 2010 Optical Society of America

OCIS Codes
(020.7010) Atomic and molecular physics : Laser trapping
(120.3940) Instrumentation, measurement, and metrology : Metrology
(120.4800) Instrumentation, measurement, and metrology : Optical standards and testing
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.3425) Lasers and laser optics : Laser stabilization
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 5, 2010
Revised Manuscript: May 12, 2010
Manuscript Accepted: May 13, 2010
Published: June 17, 2010

Citation
Masami Yasuda, Takuya Kohno, Hajime Inaba, Yoshiaki Nakajima, Kazumoto Hosaka, Atsushi Onae, and Feng-Lei Hong, "Fiber-comb-stabilized light source at 556 nm for magneto-optical trapping of ytterbium," J. Opt. Soc. Am. B 27, 1388-1393 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-7-1388


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999). [CrossRef]
  2. J. Reichert, M. Niering, R. Holzwarth, M. Weitz, Th. Udem, and T. W. Hänsch, “Phase coherent vacuum-ultraviolet to radio frequency comparison with a mode-locked laser,” Phys. Rev. Lett. 84, 3232–3235 (2000). [CrossRef] [PubMed]
  3. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000). [CrossRef]
  4. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000). [CrossRef] [PubMed]
  5. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks: Metrology at the 17th decimal place,” Science 319, 1808–1812 (2008). [CrossRef] [PubMed]
  6. H. Katori, “Spectroscopy of strontium atoms in the Lamb–Dicke confinement,” in Proceedings of the 6th Symposium on Frequency Standards and Metrology, P.Gill, ed. (World Scientific, 2002), pp. 323–330. [CrossRef]
  7. M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, “An optical lattice clock,” Nature 435, 321–324 (2005). [CrossRef] [PubMed]
  8. U. Keller, “Recent developments in compact ultrafast lasers,” Science 424, 831–838 (2003).
  9. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and Th. Udem, “Laser frequency combs for astronomical observations,” Science 321, 1335–1337 (2008). [CrossRef] [PubMed]
  10. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, “Frequency metrology with a turnkey all-fiber system,” Opt. Lett. 29, 2467–2469 (2004). [CrossRef] [PubMed]
  11. H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14, 5223–5231 (2006). [CrossRef] [PubMed]
  12. T. Fukuhara, Y. Takasu, M. Kumakura, and Y. Takahashi, “Degenerate Fermi gases of ytterbium,” Phys. Rev. Lett. 98, 030401 (2007). [CrossRef] [PubMed]
  13. T. Fukuhara, S. Sugawa, M. Sugimoto, S. Taie, and Y. Takahashi, “Mott insulator of ultracold alkaline-earth-metal-like atoms,” Phys. Rev. A 79, 041604(R) (2009). [CrossRef]
  14. N. Poli, Z. W. Barber, N. D. Lemke, C. W. Oates, L. S. Ma, J. E. Stalnaker, T. M. Fortier, S. A. Diddams, L. Hollberg, J. C. Bergquist, A. Brusch, S. Jefferts, T. Heavner, and T. Parker, “Frequency evaluation of the doubly forbidden S10–P31 transition in bosonic Y174b,” Phys. Rev. A 77, 050501(R) (2008). [CrossRef]
  15. T. Kohno, M. Yasuda, K. Hosaka, H. Inaba, Y. Nakajima, and F.-L. Hong, “One-dimensional optical lattice clock with a fermionic Y171b isotope,” Appl. Phys. Express 2, 072501 (2009). [CrossRef]
  16. N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, and C. W. Oates, “Spin-1/2 optical lattice clock,” Phys. Rev. Lett. 103, 063001 (2009). [CrossRef] [PubMed]
  17. T. Kuwamoto, K. Honda, Y. Takahashi, and T. Yabuzaki, “Magneto-optical trapping of Yb atoms using an intercombination transition,” Phys. Rev. A 60, R745–R748 (1999). [CrossRef]
  18. S. Uetake, A. Yamaguchi, S. Kato, and Y. Takahashi, “High power narrow linewidth laser at 556 nm for magneto-optical trapping of ytterbium,” Appl. Phys. B 92, 33–35 (2008). [CrossRef]
  19. R. Maruyama, R. H. Wynar, M. V. Romalis, A. Andalkar, M. D. Swallows, C. E. Pearson, and E. N. Fortson, “Investigation of sub-Doppler cooling in an ytterbium magneto-optical trap,” Phys. Rev. A 68, 011403(R) (2003). [CrossRef]
  20. C. W. Hoyt, Z. W. Barber, C. W. Oates, T. M. Fortier, S. A. Diddams, and L. Hollberg, “Observation and absolute frequency measurements of the S10–P31 optical clock transition in neutral ytterbium,” Phys. Rev. Lett. 95, 083003 (2005). [CrossRef] [PubMed]
  21. Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18, 1667–1676 (2010). [CrossRef] [PubMed]
  22. Y. Nakajima, H. Inaba, F.-L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281, 4484–4487 (2008). [CrossRef]
  23. Y. Nakajima, H. Inaba, K. Iwakuni, K. Hosaka, A. Onae, K. Minoshima, and F.-L. Hong, “All-fiber-based frequency comb with an intra-cavity waveguide electro-optic modulator,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Technical Digest (CD) (Optical Society of America, 2010), paper CMX1.
  24. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221–230 (1966). [CrossRef]
  25. T. Kohno, M. Yasuda, H. Inaba, and F.-L. Hong, “Optical frequency stability measurement of an external cavity blue diode laser with an optical frequency comb,” Jpn. J. Appl. Phys. 47, 8856–8858 (2008). [CrossRef]
  26. M. Yasuda, F.-L. Hong, T. Kohno, H. Inaba, K. Hosaka, C. Willis, T. Kurosu, A. Onae, and S. Ohshima, “Present status of the development of an Yb optical lattice clock at NMIJ/AIST (National Metrology Institute of Japan/National Institute of Advanced Industrial Science and Technology),” Proc. SPIE 6673, 66730D (2007). [CrossRef]
  27. W. D. Phillips, “Laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70, 721–741 (1998). [CrossRef]
  28. F.-L. Hong, H. Inaba, K. Hosaka, M. Yasuda, and A. Onae, “Doppler-free spectroscopy of molecular iodine using a frequency-stable light source at 578 nm,” Opt. Express 17, 1652–1659 (2009). [CrossRef] [PubMed]
  29. K. Hosaka, H. Inaba, Y. Nakajima, M. Yasuda, T. Kohno, A. Onae, and F.-L. Hong, “Evaluation of the clock laser for an Yb lattice clock using an optical fibre comb,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 606–612 (2010). [CrossRef] [PubMed]
  30. F.-L. Hong, K. Minoshima, A. Onae, H. Inaba, H. Takada, A. Hirai, H. Matsumoto, T. Sugiura, and M. Yoshida, “Broad-spectrum frequency comb generation and carrier-envelope offset frequency measurement by second harmonic generation of a mode-locked fiber laser,” Opt. Lett. 28, 1516–1518 (2003). [CrossRef] [PubMed]
  31. C. Gohle, Th. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234–237 (2005). [CrossRef] [PubMed]
  32. R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94, 193201 (2005). [CrossRef] [PubMed]
  33. O. D. Mücke, O. Kuzucu, F. N. C. Wong, E. P. Ippen, F. X. Kaertner, S. M. Foreman, D. J. Jones, L.-S. Ma, J. L. Hall, and J. Ye, “Experimental implementation of optical clockwork without carrier-envelope phase control,” Opt. Lett. 29, 2806–2808 (2004). [CrossRef] [PubMed]
  34. J. Jiang, A. Onae, H. Matsumoto, and F.-L. Hong, “Frequency measurement of acetylene-stabilized lasers using a femtosecond optical comb without carrier-envelope offset frequency control,” Opt. Express 13, 1958–1965 (2005). [CrossRef] [PubMed]
  35. P. Malara, P. Maddaloni, G. Gagliardi, and P. De Natale, “Absolute frequency measurement of molecular transitions by a direct link to a comb generated around 3-μm,” Opt. Express 16, 8242–8249 (2008). [CrossRef] [PubMed]
  36. K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80, 032518 (2009). [CrossRef]
  37. F.-L. Hong, M. Musha, M. Takamoto, H. Inaba, S. Yanagimachi, A. Takamizawa, K. Watabe, T. Ikegami, M. Imae, Y. Fujii, M. Amemiya, K. Nakagawa, K. Ueda, and H. Katori, “Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer,” Opt. Lett. 34, 692–694 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited