OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 7 — Jul. 1, 2010
  • pp: 1414–1420

Distributed feedback ytterbium fiber laser: experiment and analytical model

Maxim A. Nikulin, Dmitriy E. Churin, Aleksandr A. Vlasov, and Evgeny V. Podivilov  »View Author Affiliations

JOSA B, Vol. 27, Issue 7, pp. 1414-1420 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (188 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We compare the slope efficiency of a 1093 nm ytterbium distributed feedback fiber laser obtained in the experiment to the value calculated within the analytical model. The measured reflection and transmission spectra of the laser cavity, which is formed by a 4 cm long π-shifted fiber Bragg grating, allowed us to determine the cavity parameters employed in the analytical model. We took into account pump absorption that is significant for the model of ytterbium fiber lasers. A good agreement between the theory and the experiment is demonstrated. The considered analytical model is suitable for optimizing distributed feedback fiber laser parameters.

© 2010 Optical Society of America

OCIS Codes
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: March 12, 2010
Manuscript Accepted: May 6, 2010
Published: June 17, 2010

Maxim A. Nikulin, Dmitriy E. Churin, Aleksandr A. Vlasov, and Evgeny V. Podivilov, "Distributed feedback ytterbium fiber laser: experiment and analytical model," J. Opt. Soc. Am. B 27, 1414-1420 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. T. Kringlebotn, J.-L. Archambault, L. Reekie, and D. N. Payne, “Er3+:Yb3+-codoped fiber distributed-feedback laser,” Opt. Lett. 19, 2101–2103 (1994). [CrossRef] [PubMed]
  2. J.-F. Cliche, M. Allard, and M. Têtu, “Ultra-narrow linewidth and high frequency stability laser sources,” in Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications, OSA Technical Digest (CD) (Optical Society of America, 2006), paper CFC5.
  3. W. H. Loh and R. I. Laming, “1.55 μm phase-shifted distributed feedback fibre laser,” Electron. Lett. 31, 1440–1442 (1995). [CrossRef]
  4. A. Asseh, H. Storoy, J. T. Kringlebotn, W. Margulis, B. Sahlgren, S. Sandgren, R. Stubbe, and G. Edwall, “10 cm Yb3+ DFB fibre laser with permanent phase shifted grating,” Electron. Lett. 31, 969–970 (1995). [CrossRef]
  5. S. Agger, J. H. Povlsen, and P. Varming, “Single-frequency thulium-doped distributed-feedback fiber laser,” Opt. Lett. 29, 1503–1505 (2004). [CrossRef] [PubMed]
  6. H. Simonsen, J. Henningsen, and S. Søgaard, “DFB fiber lasers as optical wavelength standards in the 1.5-μm region,” IEEE Trans. Instrum. Meas. 50, 482–485 (2001). [CrossRef]
  7. D. J. Hill, B. Hodder, J. De Freitas, S. D. Thomas, and L. Hickey, “DFB fibre-laser sensor developments,” Proc. SPIE 5855, 904–907 (2005). [CrossRef]
  8. J.-P. Wallerand, L. Robertsson, L.-S. Ma, and M. Zucco, “Absolute frequency measurement of molecular iodine lines at 514.7 nm, interrogated by a frequency-doubled Yb-doped fibre laser,” Metrologia 43, 294–298 (2006). [CrossRef]
  9. F. Markert, M. Scheid, D. Kolbe, and J. Walz, “4 W continuous-wave narrow-linewidth tunable solid-state laser source at 546 nm by externally frequency doubling a ytterbium-doped single-mode fiber laser system,” Opt. Express 15, 14476–14481 (2007). [CrossRef] [PubMed]
  10. A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, T. W. Hänsch, and T. Schätz, “High power all solid state laser system near 280 nm,” Appl. Phys. B 84, 371–373 (2006). [CrossRef]
  11. B. Jaskorzynska, E. V. Vanin, S. Helmfrid, and A. Asseh, “Gain saturation and pump depletion in high-efficiency distributed-feedback rare-earth-doped lasers,” Opt. Lett. 21, 1366–1368 (1996). [CrossRef] [PubMed]
  12. V. C. Lauridsen, J. H. Povlsen, and P. Varming, “Design of DFB fibre lasers,” Electron. Lett. 34, 2028–2030 (1998). [CrossRef]
  13. V. C. Lauridsen, J. H. Povlsen, and P. Varming, “Optimising erbium-doped DFB fibre laser length with respect to maximum output power,” Electron. Lett. 35, 300–302 (1999). [CrossRef]
  14. K. Yelen, L. M. B. Hickey, and M. N. Zervas, “Experimentally verified modeling of erbium-ytterbium co-doped DFB fiber lasers,” J. Lightwave Technol. 23, 1380–1392 (2005). [CrossRef]
  15. S. Foster, “Spatial mode structure of the distributed feedback fiber laser,” IEEE J. Quantum Electron. 40, 884–892 (2004). [CrossRef]
  16. S. Foster, “Dynamical noise in single-mode distributed feedback fiber lasers,” IEEE J. Quantum Electron. 40, 1283–1293 (2004). [CrossRef]
  17. S. Foster, “A new derivation of the fundamental mode equations for low gain distributed feedback lasers,” IEEE J. Quantum Electron. 43, 4–5 (2007). [CrossRef]
  18. S. Foster, “Fundamental limits on 1/f frequency noise in rare-earth-metal-doped fiber lasers due to spontaneous emission,” Phys. Rev. A 78, 013820 (2008). [CrossRef]
  19. S. D. Agger and J. H. Povlsen, “Comments on “Dynamical noise in single-mode distributed feedback fiber lasers”,” IEEE J. Quantum Electron. 42, 733–734 (2006). [CrossRef]
  20. A. A. Vlasov, D. E. Churin, and S. A. Babin, “Specifics of Bragg gratings inscription and characterization in polarization maintaining Yb-doped fiber for DFB lasers,” Laser Phys. 20 (accepted).
  21. R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun. 136, 375–378 (1997). [CrossRef]
  22. L. Dong, W. H. Loh, J. E. Caplen, J. D. Minelly, K. Hsu, and L. Reekie, “Efficient single-frequency fiber lasers with novel photosensitive Er/Yb optical fibers,” Opt. Lett. 22, 694–696 (1997). [CrossRef] [PubMed]
  23. J. J. Koponen, M. J. Söderlund, H. J. Hoffman, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14, 11539–11544 (2006). [CrossRef] [PubMed]
  24. J. Stone, “Interactions of hydrogen and deuterium with silica optical fibers: A review,” J. Lightwave Technol. 5, 712–733 (1987). [CrossRef]
  25. M. A. Mel’kumov, I. A. Bufetov, K. S. Kravtsov, A. V. Shubin, and E. M. Dianov, “Lasing parameters of ytterbium-doped fibres doped with P2O5 and Al2O3,” Quantum Electron. 34, 843–848 (2004). [CrossRef]
  26. E. Rønnekleiv, J. T. Kringlebotn, and D. Thingbø, “800 GHz continuously tunable fiber DFB laser for high speed high accuracy spectral characterization,” in Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, OSA Technical Digest Series (Optical Society of America, 2001), paper BWB2.
  27. O. Svelto, Principles of Lasers, 4th ed. (Plenum, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited