OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 7 — Jul. 1, 2010
  • pp: 1458–1463

All-optical frequency-controlled frequency switch

T. Sorrentino, O. Di Lorenzo, L. C. de Oliveira, M. Chevrollier, and M. Oriá  »View Author Affiliations

JOSA B, Vol. 27, Issue 7, pp. 1458-1463 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (150 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Orthogonally polarized optical feedback has been proven to act on the frequency of semiconductor lasers. The coupling of this feedback to a nonlinear filter results in bistability for the frequency of the laser output [ Phys. Rev. Lett. 94, 173902 (2005) ]. This phenomenon opens the way to the development of all-optical devices such as a switch between frequency states of the optical emission. For demonstrating this particular application we use an AsGaAl monomode laser emitting around 852 nm, together with a warm atomic cesium vapor as a resonant filter. The output frequency state of the switch is determined by two different frequencies of a control laser, with each control frequency changing the switch frequency in only one direction.

© 2010 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(190.1450) Nonlinear optics : Bistability
(350.2450) Other areas of optics : Filters, absorption
(250.6715) Optoelectronics : Switching

ToC Category:

Original Manuscript: February 2, 2010
Revised Manuscript: April 26, 2010
Manuscript Accepted: May 26, 2010
Published: June 22, 2010

T. Sorrentino, O. Di Lorenzo, L. C. de Oliveira, M. Chevrollier, and M. Oriá, "All-optical frequency-controlled frequency switch," J. Opt. Soc. Am. B 27, 1458-1463 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. D. Smith, “Lasers, nonlinear optics and optical computers,” Nature 316, 319–324 (1985). [CrossRef]
  2. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).
  3. G. L. Lippi, H. Grassi, T. Ackemann, A. Aumann, B. Schapers, J. P. Seipenbusch, and J. R. Tredicce, “Bistability and transients in CO2 laser patterns,” J. Opt. B: Quantum Semiclassical Opt. 1, 161–165 (1999). [CrossRef]
  4. E. Arimondo and B. M. Dinelli, “Optical bistability of a CO2 laser with intracavity saturable absorber: Experiment and model,” Opt. Commun. 44, 277–282 (1983). [CrossRef]
  5. F. M. Raymo and S. Giordani, “All-optical processing with molecular switches,” Proc. Natl. Acad. Sci. U.S.A. 99, 4941–4944 (2002). [CrossRef]
  6. H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry–Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976). [CrossRef]
  7. A. M. C. Dawes, L. Illing, S. M. Clark, and D. J. Gauthier, “All-optical switching in rubidium vapor,” Science 308, 672–674 (2005). [CrossRef] [PubMed]
  8. J. Zhang, G. Hernandez, and Y. Zhu, “All-optical switching at ultralow light levels,” Opt. Lett. 32, 1317–1319 (2007). [CrossRef] [PubMed]
  9. D. Lukin, “Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75, 457–472 (2003). [CrossRef]
  10. A. M. C. Dawes, D. J. Gauthier, S. Schumacher, N. H. Kwong, R. Binder, and A. L. Smirl, “Transverse optical patterns for ultra-low-light-level all-optical switching,” Laser Photonics Rev. 4, 221–243 (2010).
  11. B. Farias, T. Passerat de Silans, M. Chevrollier, and M. Oriá, “Frequency bistability of a semiconductor laser under a frequency-dependent feedback,” Phys. Rev. Lett. 94, 173902 (2005). [CrossRef] [PubMed]
  12. M. Oriá, B. Farias, T. Sorrentino, and M. Chevrollier, “Multistability in the emission frequency of a semiconductor laser,” J. Opt. Soc. Am. B 24, 1867–1873 (2007). [CrossRef]
  13. H. Yasaka and H. Kawaguchi, “Linewidth reduction and optical frequency stabilization of a distributed feedback laser by incoherent optical negative feedback,” Appl. Phys. Lett. 53, 1360–1362 (1988). [CrossRef]
  14. A. F. A. da Rocha, P. C. S. Segundo, M. Chevrollier, and M. Oriá, “Diode laser coupled to an atomic line by incoherent optical negative feedback,” Appl. Phys. Lett. 84, 179–181 (2004). [CrossRef]
  15. D.M.Kane and K.A.Shore, eds., Unlocking Dynamical Diversity: Optical Feedback Effects on Semiconductor Lasers (Wiley, 2005). [CrossRef]
  16. D.-L. Cheng, T.-C. Yen, E.-C. Liu, and K.-L. Chuang, “Suppressing mode hopping in semiconductor lasers by orthogonal-polarization optical feedback,” IEEE Photon. Technol. Lett. 16, 1435–1437 (2004). [CrossRef]
  17. T.-C. Yen, J.-W. Chang, J.-M. Lin, and R.-J. Chen, “High-frequency optical signal generation in a semiconductor laser by incoherent optical feedback,” Opt. Commun. 150, 158–162 (1998). [CrossRef]
  18. D.-L. Cheng, T.-C. Yen, J.-W. Chang, and J.-K. Tsai, “Generation of high-speed single-wavelength optical pulses in semiconductor lasers with orthogonal-polarization optical feedback,” Opt. Commun. 222, 363–369 (2003). [CrossRef]
  19. W. H. Loh, A. T. Schremer, and C. L. Tang, “Polarization self-modulation at multigigahertz frequencies in an external-cavity semiconductor-laser,” IEEE Photon. Technol. Lett. 2, 467–469 (1990). [CrossRef]
  20. W. H. Loh and C. L. Tang, “Numerical investigation of ultrahigh frequency polarization self-modulation in semiconductor lasers,” IEEE J. Quantum Electron. 27, 389–395 (1991). [CrossRef]
  21. S. Jiang, Z. Pan, M. Dagenais, R. A. Morgan, and K. Kojima, “High-frequency polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 3545–3547 (1993). [CrossRef]
  22. H. Li, A. Hohl, A. Gavrielides, H. Hou, and K. D. Choquette, “Stable polarization self-modulation in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 72, 2355–2357 (1998). [CrossRef]
  23. M. Sciamanna, T. Erneux, F. Rogister, O. Deparis, P. Meégret, and M. Blondel, “Bifurcation bridges between external-cavity modes lead to polarization self-modulation in vertical-cavity surface-emitting lasers,” Phys. Rev. A 65, 041801 (2002). [CrossRef]
  24. G. Langholtz, A. Kandel, and J. Mott, Foundations of Digital Logic Design (World Scientific, 1998), p. 340.
  25. T. Heil, A. Uchida, P. Davis, and T. Aida, “TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback,” Phys. Rev. A 68, 033811 (2003). [CrossRef]
  26. C. Masoller, T. Sorrentino, M. Chevrollier, and M. Oriá, “Bistability in semiconductor lasers with polarization-rotated frequency-dependent optical feedback,” IEEE J. Quantum Electron. 43, 261–268 (2007). [CrossRef]
  27. The current scanning is small enough to produce any appreciable amplitude modulation.
  28. The Doppler full width at half-maximum of the Cs D2 line shape in a Cs vapor cell is larger than the separation between the excited hyperfine sublevels so that the linear absorption on this transition consists of a single broad line (actually, the sum of three Doppler-broadened hyperfine lines), still reasonably well fitted by a Gaussian curve.
  29. Spontaneous emission from the excited F′ levels takes place toward F=4 and F=3 with similar probabilities. In the absence of a mechanism to redistribute the populations between the two ground sublevels, the population piles up in the uncoupled state (optical pumping process). However, in ordinary (glass or metallic) optical cells, a certain amount of population thermalization is achieved through collisions of the atoms with the cell walls. See, for example, H. N. de Freitas, A. F. A. da Rocha, M. Chevrollier, and M. Oriá, “Radiation trapping and spin relaxation of cesium atoms at cell walls,” Appl. Phys. B 76, 661–666 (2003). [CrossRef]
  30. R. W. Keyes, “Information, computing technology, and quantum computing,” J. Phys. Condens. Matter 18, S703–S719 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited