OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 8 — Aug. 1, 2010
  • pp: 1518–1522

Tunable double photonic bandgaps in a homogeneous atomic medium

Shang-qi Kuang, Ren-gang Wan, Jun Kou, Yun Jiang, and Jin-yue Gao  »View Author Affiliations

JOSA B, Vol. 27, Issue 8, pp. 1518-1522 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (292 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Double photonic bandgaps (PBGs) can simultaneously appear when double dark resonances in uniform cold atoms are spatially modulated by a resonance standing-wave. Theoretical calculations show that variable and efficient coherent optical control of the PBGs can be achieved by modulating the coupling field and standing-wave. The structures of double PBGs induced by the atomic coherence effect are better than those obtained in the photonic crystal heterostructures. We anticipate that this scheme has potential applications in optical networks for dual-channel all-optical switching or a dual-frequency optical Bragg reflector.

© 2010 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(270.1670) Quantum optics : Coherent optical effects
(160.5293) Materials : Photonic bandgap materials

ToC Category:
Atomic and Molecular Physics

Original Manuscript: March 12, 2010
Revised Manuscript: May 11, 2010
Manuscript Accepted: June 7, 2010
Published: July 9, 2010

Shang-qi Kuang, Ren-gang Wan, Jun Kou, Yun Jiang, and Jin-yue Gao, "Tunable double photonic bandgaps in a homogeneous atomic medium," J. Opt. Soc. Am. B 27, 1518-1522 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Mcade, and J. N. Win, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).
  4. S. G. Romanov, H. M. Yates, M. E. Pemble, and R. M. De La Rue, “Opal-based photonic crystal with double photonic bandgap structure,” J. Phys. Condens. Matter 12, 8221–8229 (2000). [CrossRef]
  5. M. Egen, R. Voss, B. Griesebock, and R. Zentel, “Heterostructures of polymer crystal films,” Chem. Mater. 15, 3786–3792 (2003). [CrossRef]
  6. N. Gaponik, A. Eychmüller, A. L. Rogach, V. G. Solovyev, C. M. Sotomayor Torres, and S. G. Romanov, “Structure-related optical properties of luminescent hetero-opals,” J. Appl. Phys. 95, 1029–1035 (2004). [CrossRef]
  7. M. Bardosova, M. E. Pemble, I. M. Povey, R. H. Tredgold, and D. E. Whitehead, “Enhanced Bragg reflections from size-matched heterostructure photonic crystal thin films prepared by the Langmuir–Blodgett method,” Appl. Phys. Lett. 89, 093116 (2006). [CrossRef]
  8. R. V. Nair and R. Vijaya, “Three-dimensionally ordered photonic crystal heterostructures with a double photonic stop band,” J. Appl. Phys. 102, 056102 (2007). [CrossRef]
  9. G. Q. Liu, Z. S. Wang, Y. B. Liao, H. H. Hu, and Y. Chen, “High-quality photonic crystal heterostructures fabricated by a modified self-assembly method,” Appl. Opt. 48, 2480–2484 (2009). [CrossRef]
  10. Z. Q. Liu, T. H. Feng, Q. F. Dai, L. J. Wu, and S. Lan, “Fabrication of high-quality three-dimensional photonic crystal heterostructures,” Chin. Phys. B 18, 2383–2388 (2009). [CrossRef]
  11. M. A. G. Laso, T. Lopetegi, M. J. Erro, D. Benito, M. J. Garde, and M. Sorolla, “Multiple-frequency-tuned photonic bandgap microstrip structures,” IEEE Microw. Guid. Wave Lett. 10, 220–222 (2000). [CrossRef]
  12. K. Busch and S. John, “Liquid-crystal photonic-band-gap materials: The tunable electromagnetic vacuum,” Phys. Rev. Lett. 83, 967–970 (1999). [CrossRef]
  13. D. Kang, J. E. Maclennan, N. A. Clark, A. A. Zakhidov, and R. H. Baughman, “Electro-optic behavior of liquid-crystal-filled silica opal photonic crystals: Effect of liquid-crystal alignment,” Phys. Rev. Lett. 86, 4052–4055 (2001). [CrossRef]
  14. X. Y. Hu, Q. Zhang, Y. H. Liu, B. Y. Cheng, and D. Z. Zhang, “Ultrafast three-dimensional tunable photonic crystal,” Appl. Phys. Lett. 83, 2518–2520 (2003). [CrossRef]
  15. H. W. Tan, H. M. van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. Gösele, “Nonlinear optical tuning of a two-dimensional silicon photonic crystal,” Phys. Rev. B 70, 205110 (2004). [CrossRef]
  16. M. Artoni and G. C. La Rocca, “Optically tunable photonic stop bands in homogeneous absorbing media,” Phys. Rev. Lett. 96, 073905 (2006). [CrossRef] [PubMed]
  17. S. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997). [CrossRef]
  18. Q. Y. He, J. H. Wu, T. J. Wang, and J. Y. Gao, “Dynamic control of the photonic stop bands formed by a standing wave in inhomogeneous broadening solids,” Phys. Rev. A 73, 053813 (2006). [CrossRef]
  19. Q. Y. He, Y. Xue, M. Artoni, G. C. La Rocca, J. H. Xu, and J. Y. Gao, “Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystals,” Phys. Rev. B 73, 195124 (2006). [CrossRef]
  20. J. H. Wu, M. Artoni, and G. C. La Rocca, “Controlling the photonic band structure of optically driven cold atoms,” J. Opt. Soc. Am. B 25, 1840–1849 (2008). [CrossRef]
  21. J. H. Wu, G. C. La Rocca, and M. Artoni, “Controlled light-pulse propagation in driven color centers in diamond,” Phys. Rev. B 77, 113106 (2008). [CrossRef]
  22. M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999). [CrossRef]
  23. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994). [CrossRef]
  24. D. A. Mazurenko, R. Kerst, J. I. Dijkhuis, A. V. Akimov, V. G. Golubev, D. A. Kurdyukov, A. B. Pevtsov, and A. V. Sel’kin, “Ultrafast optical switching in three-dimensional photonic crystals,” Phys. Rev. Lett. 91, 213903 (2003). [CrossRef]
  25. A. W. Brown and M. Xiao, “All-optical switching and routing based on an electromagnetically induced absorption grating,” Opt. Lett. 30, 699–701 (2005). [CrossRef]
  26. G. Wang, Y. Xue, J. H. Wu, S. S. Liu, Z. H. Kang, and J. Y. Gao, “Dual-channel all-optical wavelength conversion switching by four-wave mixing,” Opt. Express 17, 23332–23337 (2009). [CrossRef]
  27. In this paper, the wavelengths of the probe, coupling, and standing fields are λp=852.335 nm, λc=852.357 nm, and λs=852.356 nm, respectively.
  28. M. Artoni, G. C. La Rocca, and F. Bassani, “Resonantly absorbing one-dimensional photonic crystals,” Phys. Rev. E 72, 046604 (2005). [CrossRef]
  29. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001).
  30. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, 1975).
  31. A. André and M. D. Lukin, “Manipulating light pulses via dynamically controlled photonic band gap,” Phys. Rev. Lett. 89, 143602 (2002). [CrossRef]
  32. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, “Observation of ultraslow and stored light pulses in a solid,” Phys. Rev. Lett. 88, 023602 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited