OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 8 — Aug. 1, 2010
  • pp: 1534–1542

Spectrum shaping of an all Nd:glass CPA 1–10 ps kilojoule petawatt-class laser system

Ming Li, Bin Zhang, Yaping Dai, and Tao Wang  »View Author Affiliations


JOSA B, Vol. 27, Issue 8, pp. 1534-1542 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001534


View Full Text Article

Enhanced HTML    Acrobat PDF (2092 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a new method for the chirped pulse spectrum shaping, which is significant in chirped pulse amplification (CPA) system to compensate the gain narrowing and the gain saturation, to obtain the shortest compressed pulse, and to improve the signal-to-noise ratio (SNR) of the output, while simultaneously increasing the amplifier efficiencies. This method is based on a grating system to decompose the chirped pulse spectrum to a spatial space, a microstructure on a multilayer dielectric thin film as a functional reflector to shape the space distribution, and a synthesis system to compose this space distribution to a shaped frequency chirped pulse before incidence into the next amplifier stage. The results show that the damage threshold by the high-power laser can be enhanced, and this functional reflector can be fabricated in an easy and cheap way, in which the accuracy in lithography is 1 μ m , the etching tolerance is 35 nm, and the roughness of the etching surface is 8.5 nm. In addition, the phase aberration is less than 12 mrad in the chirped bandwidth of a few tens of nanometers, and the spatial distribution of the final output almost remains. The studies show that the energy integral of the output chirped pulse is extracted 17% and 29.5% more with center and off-center modulations, respectively, compared with the normal amplification. Moreover, the SNR has enhanced to 10 10 : 1 at 10 ps after spectrum shaping, which enhances the SNR near 1–2 orders than that without the spectrum shaping.

© 2010 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(220.0220) Optical design and fabrication : Optical design and fabrication
(230.0230) Optical devices : Optical devices
(230.3990) Optical devices : Micro-optical devices
(240.0310) Optics at surfaces : Thin films
(320.0320) Ultrafast optics : Ultrafast optics

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 10, 2009
Revised Manuscript: May 4, 2010
Manuscript Accepted: May 5, 2010
Published: July 12, 2010

Citation
Ming Li, Bin Zhang, Yaping Dai, and Tao Wang, "Spectrum shaping of an all Nd:glass CPA 1–10 ps kilojoule petawatt-class laser system," J. Opt. Soc. Am. B 27, 1534-1542 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-8-1534


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. F. Li, A. L’Huilier, M. Ferray, L. A. Lompre, and G. Mainfray, “Multiple-harmonic generation in rare gases at high laser intensity,” Phys. Rev. A 39, 5751–5761 (1989). [CrossRef] [PubMed]
  2. P. H. Y. Lee, D. E. Casperson, and G. T. Schappert, “Search for multiphoton-induced inner-shell excitations,” Phys. Rev. A 40, 1363–1366 (1989). [CrossRef] [PubMed]
  3. R. R. Freeman, P. H. Bucksbaum, H. Milchberg, S. Darack, D. Schumacher, and M. E. Geusic, “Above-threshold ionization with subpicosecond laser pulses,” Phys. Rev. Lett. 59, 1092–1095 (1987). [CrossRef] [PubMed]
  4. M. M. Murnane, H. C. Kapteyn, and R. W. Falcone, “High-density plasmas produced by ultrafast laser pulses,” Phys. Rev. Lett. 62, 155–158 (1989). [CrossRef] [PubMed]
  5. J. A. Cobble, G. A. Kyrala, A. A. Hauer, A. J. Taylor, C. C. Gomez, N. D. Delamater, and G. T. Schappert, “Kilovolt x-ray spectroscopy of a subpicosecond-laser-excited source,” Phys. Rev. A 39, 454–457 (1989). [CrossRef] [PubMed]
  6. P. Gibbon and A. R. Bell, “Cascade focusing in the beat-wave accelerator,” Phys. Rev. Lett. 61, 1599–1602 (1988). [CrossRef] [PubMed]
  7. M. M. Murnane, H. C. Kapteyn, and R. W. Falcone, “Generation and application of ultrafast X-ray sources,” IEEE J. Quantum Electron. 25, 2417–2422 (1989). [CrossRef]
  8. F. V. Bunkin and I. I. Tugov, “Possibility of creating electron-positron pairs in a vacuum by the focusing of laser radiation,” Sov. Phys. Dokl. 14, 678–681 (1970).
  9. J. W. Shearer, J. Garrison, J. Wong, and J. E. Swain, “Pair production by relativistic electrons from an intense laser focus,” Phys. Rev. A 8, 1582–1588 (1973). [CrossRef]
  10. D. M. Pennington, C. G. Brown, T. E. Cowan, S. P. Hatchett, E. Henry, S. Herman, M. Kartz, M. Key, J. Koch, A. J. MacKinnon, M. D. Perry, T. W. Phillips, M. Roth, T. C. Sangster, M. Singh, R. A. Snavely, M. Stoyer, B. C. Stuart, and S. C. Wilks, “Petawatt laser system and experiments,” IEEE J. Sel. Top. Quantum Electron. 6, 676–688 (2000). [CrossRef]
  11. M. Tabak, J. Hammer, M. E. Glinsky, W. L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, M. D. Perry, and R. J. Mason, “Ignition and high gain with ultra-powerful lasers,” Phys. Plasmas 1, 1626–1634 (1994). [CrossRef]
  12. M. Li, Y. P. Dai, T. Wang, and B. Zhang, “Spectrum modulating and shaping device for amplifying chirped pulse (P),” Patent (CN), ZL200810033886.4, July 30, 2008.
  13. M. Li, Y. P. Dai, T. Wang, B. Zhang, and Z. Fan, “Auto-collimation plane modulation spectrum modulation shaping device for chirped pulse amplification (P),” Patent (CN), ZL200810033888.3, July 2008.
  14. M. Li, Y. P. Dai, T. Wang, B. Zhang, and Z. X. Fan, “Self-collimation concave modulation spectral modulation shaping device with compact structure (P),” Patent (CN), ZL200810033887.9, July 30, 2008.
  15. X. L. Zhang, Z. Li, M. Li, and B. Zhang, “Compensation methods for alignment errors of tiled grating-pair compressor,” High Power Laser and Particle Beams 19, 623–629 (2007).
  16. M. D. Perry and F. G. Patterson, “Spectral shaping in chirped-pulse amplification,” Opt. Lett. 15, 381–383 (1990). [CrossRef]
  17. Y. H. Chuang, D. D. Meyerhofer, S. Augst, H. Chen, J. Peatross, and S. Uchida, “Suppression of the pedestal in a chirped-pulse-amplification laser,” J. Opt. Soc. Am. B 8, 1226–1235 (1991). [CrossRef]
  18. K. Yamakawa, M. Aoyama, S. Matsuoka, H. Takuma, D. N. Fittinghoff, and C. P. J. Barty, “Ultrahigh-peak and high-average power chirped-pulse amplification of sub-20-fs pulses with Ti:Sapphire amplifiers,” IEEE J. Sel. Top. Quantum Electron. 4, 385–394 (1998). [CrossRef]
  19. C. P. J. Barty, G. Korn, F. Raksi, C. Rose-Petruck, J. Squier, A.-C. Tien, K. R. Wilson, V. V. Yakovlev, and K. Yamakawa, “Regenerative pulse shaping and amplification of ultrabroadband optical pulses,” Opt. Lett. 21, 219–221 (1996). [CrossRef]
  20. A. E. Siegman, Lasers (University Science Books, 1986), pp. 363–368.
  21. E. Martinez, “3000 times grating compressor with positive group velocity dispersion: Application to fiber compensation in 1.3–1.6 pm regime,” IEEE J. Quantum Electron. 23, 59–64 (1987). [CrossRef]
  22. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5, 454–458 (1969). [CrossRef]
  23. J. D. McMullen, “Analysis of compression of frequency chirped optical pulses by a strongly dispersive grating pair,” Appl. Opt. 18, 737–741 (1979). [CrossRef]
  24. L.Q. Liu, H. S. Peng, X. F. Wei, X. M. Zen, Z. T. Peng, X. J. Huang, X. D. Wang, K. N. Zhou, X. Wang, Q. H. Zhu, X. L. Chu, and Y. Guo, “Spectral gain narrowing compensation modulation function in high power ultra-short pulse laser system,” High Power Laser and Particle Beams 17, 856–860 (2005).
  25. M. Born and E. Wolf, The Principle of Optics (Pergamon, 1980).
  26. M. Li, B. Zhang, Y. Dai, Z. Fan, Z. Wang, and W. Huang, “Micro lens medium film structure reflecting lens for chirped pulse amplifying spectrum (P),” Patent (CN), ZL200710049516.5, March 12, 2008.
  27. M. Li, B. Zhang, Y. Dai, and T. Wang, “Spectrum shaping and modulating method (P),” Patent (CN), ZL200810044818.8, July 30, 2008.
  28. X. L. Chu, B. Zhang, B. W. Cai, X. F. Wei, Q. H. Zhu, X. J. Huang, X. D. Yuan, X. M. Zeng, L. Q. Liu, X. Wang, X. D. Wang, K. N. Zhou, and Y. Guo, “Study of the multipass amplification of the chirped pulse and its inverse problem,” Acta Phys. Sin. 54, 4696–1701 (2005).
  29. B. Zhang and B. D. Lü, “An inverse problem of multistage and multipass pulsed laser amplifiers,” Chin. J. Lasers 24, 495–500 (1997).
  30. B. Zhang and B. D. Lü, “Inverse problem of a laser amplifier system containing a spatial filter,” Acta Phys. Sin. 47, 1–8 (1998).
  31. M. Li, B. Zhang, Y. P. Dai, T. Wang, Z. X. Fan, and W. Huang, “Fabrication control functions of multilayer dielectric thin film reflector for spectrum reshaping,” Acta Opt. Sin. 29, 1352–1357 (2009). [CrossRef]
  32. H. M. Peng and S. J. Wang, X-Ray Lasers (Defense Industry, 1997).
  33. J. F. Tang, P. F. Gu, X. Liu, and H. F. Li, Modern Optical Thin Film Technology (Zhejiang U. Press, 2006).
  34. W. Weinstein, “Computations in thin film optics,” Vacuum 4, 3–19 (1954). [CrossRef]
  35. K. X. Fu, D. Y. Zhang, Z. H. Wang, Q. Z. Zhang, and J. Zhang, “Rigorous modal theory of phase grating and the total reflectance property,” Acta Phys. Sin. 47, 1278–1289 (1998).
  36. M. Li, B. Zhang, Y. P. Dai, T. Wang, and Z. X. Fan, “Tolerance of ion beam etching on the multilayer dielectric thin film reflector for spectrum reshaping,” High Power Laser and Particle Beams. 21, 761–766 (2009).
  37. M. Li, B. Zhang, Y. P. Dai, T. Wang, Z. X. Fan, and W. Huang, “Multilayer dielectric thin film reflector for spectrum reshaping of chirped pulse laser in Nd:glass chirped pulse amplification system,” Acta Phys. Sin. 57, 4542–4550 (2008).
  38. Z. Q. Lin, X. T. He, and J. Q. Zhu, “Laser fusion driver development in SIOM and some related optical technology progress in China,” in Pacific Rim Conference on Lasers and Electro-Optics (2007), Vol. 1, pp. 90–91.
  39. Y. P. Dai, G. Xu, T. Wang, Z. Q. Lin, J. Q. Zhu, and Y. Gu, “Development of 1kJ PW laser beamline in SG-II Facility,” in European Conference on Lasers and Electro-Optics 2007 and the International Quantum Electronics Conference (CLEOE-IQEC 2007) (2007), Vol. 1, pp. 17–22.
  40. M. Li, B. Zhang, Y. Dai, Z. Fan, T. Wang, and W. Huang, “Medium film structure reflector for pulse width device (CN),” Patent (CN), ZL200720080292.X, October 22, 2008.
  41. J. A. Britten, W. A. Molander, A. M. Komashko, and C. P. Barty, “Multilayer dielectric grating for petawatt-class laser system,” Proc. SPIE 5273, 1–7 (2004). [CrossRef]
  42. X. H. Dong, Y. Liu, F. Y. Zhao, D. Q. Xu, X. D. Xu, Y. G. Zhou, X. Wang, C. R. Yao, Y. L. Hong, S. J. Fu, and C. Y. Xu, “Characteristic of a large-scale ion beam etcher based on radio frequency linear source,” Acta Univ. Sci. and Tech. China 37, 530–536 (2007).
  43. X. D. Wang, Y. Liu, Y. L. Hong, S. J. Fu, and X. D. Xu, “Reactive ion etching of HfO2 films,” Vac. Sci. Technol. 24, 313–316 (2004).
  44. X. D. Wang, Y. Liu, X. D. Xu, Y. L. Hong, and S. J. Fu, “Ion beam etching of quartz and BK7 glass,” Vac. Sci. Technol. 24, 397–400 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited