OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 8 — Aug. 1, 2010
  • pp: 1576–1582

Dispersive properties of linear chains of lossy metal nanoparticles

Matteo Conforti and Massimiliano Guasoni  »View Author Affiliations


JOSA B, Vol. 27, Issue 8, pp. 1576-1582 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001576


View Full Text Article

Enhanced HTML    Acrobat PDF (326 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study the propagation characteristics of optical signals in waveguides composed of linear periodic arrangements of metallic nanoparticles embedded in a dielectric host. We find the complex Bloch band diagram for the guided modes including material losses by employing Mie scattering theory as well as coupled dipole approximations. The results of the model are validated through finite element solution of the Maxwell’s equations.

© 2010 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(260.2030) Physical optics : Dispersion
(260.3910) Physical optics : Metal optics

ToC Category:
Physical Optics

History
Original Manuscript: April 30, 2010
Manuscript Accepted: June 8, 2010
Published: July 16, 2010

Citation
Matteo Conforti and Massimiliano Guasoni, "Dispersive properties of linear chains of lossy metal nanoparticles," J. Opt. Soc. Am. B 27, 1576-1582 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-8-1576


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998). [CrossRef]
  2. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000). [CrossRef]
  3. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003). [CrossRef]
  4. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70, 125429 (2004). [CrossRef]
  5. D. S. Citrin, “Coherent excitation transport in metal-nanoparticle chains,” Nano Lett. 4, 1561–1565 (2004). [CrossRef]
  6. R. A. Shore and A. D. Yaghjian, “Travelling electromagnetic waves on linear periodic arrays of lossless spheres,” Electron. Lett. 41, 578–580 (2005). [CrossRef]
  7. C. R. Simovski, A. J. Viitanen, and S. A. Tretyakov, “Resonator mode in chains of silver nanoparticles and its possible application,” Phys. Rev. E 72, 066606 (2005). [CrossRef]
  8. D. S. Citrin, “Plasmon-polariton transport in metal-nanoparticle chains embedded in a gain medium,” Opt. Lett. 31, 98–100 (2006). [CrossRef] [PubMed]
  9. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74, 033402 (2006). [CrossRef]
  10. A. Alú and N. Engheta, “Theory of linear chains of metamaterial/plasmonic nanoparticles as a subdiffraction optical nanotrasmission lines,” Phys. Rev. B 74, 205436 (2006). [CrossRef]
  11. V. A. Markel and A. K. Sarychev, “Propagation of surface plasmons in ordered and disordered chains of nanoparticles,” Phys. Rev. B 75, 085426 (2007). [CrossRef]
  12. A. A. Govyadinov and V. A. Markel, “From slow to superluminal propagation: Dispersive properties of surface plasmon polaritons in linear chains of metallic nanospheroids,” Phys. Rev. B 78, 035403 (2008). [CrossRef]
  13. J. N. Anker, W. P. Hall, O. Lyanders, N. C. Shan, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008). [CrossRef]
  14. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005). [CrossRef] [PubMed]
  15. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef] [PubMed]
  16. J. M. Gerardy and M. Ausloos, “Absorption spectrum of spheres from the general solution of Maxwell’s equations. II. Optical properties of aggregated metal spheres,” Phys. Rev. B 25, 4204–4229 (1982). [CrossRef]
  17. J. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  18. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  19. Y.-l. Xu, “Fast evaluation of the Gaunt coefficients,” Math. Comput. 65, 1601–1612 (1996). [CrossRef]
  20. L. Lewin, Structural Properties of Polylogarithms (American Mathematical Society, 1991).
  21. W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989). [CrossRef]
  22. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  23. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007), p. 29.
  24. M. Davanco, Y. Uhzhumov, and G. Shvetz, “The complex Bloch bands of a 2D plasmonic crystal displaying isotropic negative refraction,” Opt. Express 15, 9681–9691 (2007). [CrossRef] [PubMed]
  25. J. Jin, The Finite Element Method in Electromagnetics (Wiley, 2002).
  26. J.-C. Nédélec, “Mixed finite elements in R3,” Numer. Math. 35, 315–341 (1980). [CrossRef]
  27. D. Boffi, M. Conforti, and L. Gastaldi, “Modified edge finite elements for photonic crystals,” Numer. Math. 105, 249–266 (2006). [CrossRef]
  28. http://www.comsol.com.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited