OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 8 — Aug. 1, 2010
  • pp: 1610–1616

Effect of gain saturation in a gain compensated perfect lens

Marte P. Hatlo Andresen, Aleksander V. Skaldebø, Magnus W. Haakestad, Harald E. Krogstad, and Johannes Skaar  »View Author Affiliations


JOSA B, Vol. 27, Issue 8, pp. 1610-1616 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001610


View Full Text Article

Enhanced HTML    Acrobat PDF (207 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The transmission of evanescent waves in a gain compensated perfect lens is discussed. In particular, the impact of gain saturation is included in the analysis, and a method for calculating the fields of such nonlinear systems is developed. Gain compensation clearly improves the resolution; however, a number of nonideal effects arise as a result of gain saturation. The resolution associated with the lens is strongly dependent on the saturation constant of the active medium.

© 2010 Optical Society of America

OCIS Codes
(160.4670) Materials : Optical materials
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials

ToC Category:
Materials

History
Original Manuscript: May 12, 2010
Manuscript Accepted: June 1, 2010
Published: July 22, 2010

Citation
Marte P. Hatlo Andresen, Aleksander V. Skaldebø, Magnus W. Haakestad, Harald E. Krogstad, and Johannes Skaar, "Effect of gain saturation in a gain compensated perfect lens," J. Opt. Soc. Am. B 27, 1610-1616 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-8-1610


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative ϵ and μ,” Sov. Phys. Usp. 10, 509–514 (1968). [CrossRef]
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  3. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef] [PubMed]
  4. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef] [PubMed]
  5. U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” New J. Phys. 8, paper 247 (2006). [CrossRef]
  6. B. Nistad and J. Skaar, “Causality and electromagnetic properties of active media,” Phys. Rev. E 78, 036603 (2008). [CrossRef]
  7. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007). [CrossRef]
  8. V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005). [CrossRef]
  9. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Low-loss negative-index metamaterials at telecommunication wavelengths,” Opt. Lett. 31, 1800–1802 (2006). [CrossRef] [PubMed]
  10. D. H. Kwon, D. H. Werner, A. V. Kildishev, and V. M. Shalaev, “Dual-band negative-index metamaterials in the near-infrared frequency range,” in Proceedings of IEEE Antennas and Propagation Society International Symposium (IEEE, 2007), pp. 2861–2864.
  11. S. Anantha Ramakrishna, J. B. Pendry, D. Schurig, D. R. Smith, and S. Schultz, “The asymmetric lossy near-perfect lens,” J. Mod. Opt. 49, 1747–1762 (2002). [CrossRef]
  12. Ø. Lind-Johansen, K. Seip, and J. Skaar, “The perfect lens on a finite bandwidth,” J. Math. Phys. 50, 012908 (2009). [CrossRef]
  13. S. Anantha Ramakrishna and J. B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101 (2003). [CrossRef]
  14. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, and V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31, 3022–3024 (2006). [CrossRef] [PubMed]
  15. A. K. Popov and V. M. Shalaev, “Compensating losses in negative-index metamaterials by optical parametric amplification,” Opt. Lett. 31, 2169–2171 (2006). [CrossRef] [PubMed]
  16. T. A. Klar, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Negative-index metamaterials: Going optical,” IEEE J. Sel. Top. Quantum Electron. 12, 1106–1115 (2006). [CrossRef]
  17. J. Zhang, H. Jiang, B. Gralak, S. Enoch, G. Tayeb, and M. Lequime, “Compensation of loss to approach −1 effective index by gain in metal-dielectric stacks,” Eur. Phys. J.: Appl. Phys. 46, 32603–32608 (2009). [CrossRef]
  18. A. Fang, Th. Koschny, M. Wegener, and C. M. Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79, 241104 (2009). [CrossRef]
  19. Y. Sivan, S. Xiao, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Frequency-domain simulations of a negative-index material with embedded gain,” Opt. Express 17, 24060–24074 (2009). [CrossRef]
  20. M. A. Vincenti, D. de Ceglia, V. Rondinone, A. Ladisa, A. D’Orazio, M. J. Bloemer, and M. Scalora, “Loss compensation in metal-dielectric structures in negative-refraction and super-resolving regimes,” Phys. Rev. A 80, 053807 (2009). [CrossRef]
  21. Z. G. Dong, H. Liu, T. Li, Z. H. Zhu, S. M. Wang, J. X. Cao, S. N. Zhu, and X. Zhang, “Optical loss compensation in a bulk left-handed metamaterial by the gain in quantum dots,” Appl. Phys. Lett. 96, 044104 (2010). [CrossRef]
  22. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005). [CrossRef] [PubMed]
  23. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express 14, 6778–6786 (2006). [CrossRef] [PubMed]
  24. N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85, 5040–5042 (2004). [CrossRef]
  25. M. O. Scully and M. S. Zubairy, “Atom-field interaction—semiclassical theory,” in Quantum Optics (Cambridge Univ. Press, 1997), pp. 145–192.
  26. M. G. Destro and M. S. Zubairy, “Small-signal gain and saturation intensity in dye laser amplifiers,” Appl. Opt. 31, 7007–7011 (1992). [CrossRef] [PubMed]
  27. O. Svelto, Principles of Lasers (Plenum, 1998).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited