OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 9 — Sep. 1, 2010
  • pp: 1701–1706

Slow-light dark solitons in insulator–insulator–metal plasmonic waveguides

E. P. Fitrakis, Thomas Kamalakis, and Thomas Sphicopoulos  »View Author Affiliations


JOSA B, Vol. 27, Issue 9, pp. 1701-1706 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001701


View Full Text Article

Enhanced HTML    Acrobat PDF (277 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The potential of slow-light propagation in an insulator–insulator–metal plasmonic waveguide is studied. Due to the high dispersion of the device in the frequency region where the signal group velocity is low, slow-light optical pulses broaden in time and intersymbol interference occurs, limiting the achievable data rates and transmission distance. In order to overcome this problem, we analytically and numerically investigate slow dark solitons in the normal dispersion regime of the waveguide. The storing capability of the waveguide is analyzed from an application point of view.

© 2010 Optical Society of America

OCIS Codes
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(200.4490) Optics in computing : Optical buffers
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 26, 2010
Manuscript Accepted: June 3, 2010
Published: August 5, 2010

Citation
E. P. Fitrakis, Thomas Kamalakis, and Thomas Sphicopoulos, "Slow-light dark solitons in insulator–insulator–metal plasmonic waveguides," J. Opt. Soc. Am. B 27, 1701-1706 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-9-1701


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, “Optical delay lines based on optical filters,” IEEE J. Quantum Electron. 37, 525–532 (2001). [CrossRef]
  2. R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Academic, 1998).
  3. J. T. Mok and B. J. Eggleton, “Photonics: Expect more delays,” Nature 433, 811–812 (2005). [CrossRef] [PubMed]
  4. H. Raether, Surface Plasmons (Springer-Verlag, Berlin 1988).
  5. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  6. A. D. Boardman, G. S. Cooper, A. A. Maradudin, and T. P. Shen, “Surface-polariton solitons,” Phys. Rev. B 34, 8273–8278 (1986). [CrossRef]
  7. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005). [CrossRef] [PubMed]
  8. M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1, 573–576 (2007). [CrossRef]
  9. B. Han and C. Jiang, “Plasmonic slow light waveguide and cavity,” Appl. Phys. B: Lasers Opt. 95, 97–103 (2009). [CrossRef]
  10. D. Yu. Fedyanin, A. V. Arsenin, V. G. Leiman, and A. D. Gladun, “Surface plasmon-polaritons with negative and zero group velocities propagating in thin metal films,” Quantum Electron. 39, 745–750 (2009). [CrossRef]
  11. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  12. Yu. S. Kivshar, “Dark solitons in nonlinear optics,” IEEE J. Quantum Electron. 29, 250–264 (1993). [CrossRef]
  13. N. P. Proukakis, N. G. Parker, D. J. Frantzeskakis, and C. S. Adams, “Analogies between dark solitons in atomic Bose-Einstein condensates and optical systems,” J. Opt. B: Quantum Semiclassical Opt. 6, S380–S391 (2004). [CrossRef]
  14. Y. Li and X. Zhang, “SPM of nonlinear surface plasmon waveguides,” Opt. Commun. 281, 5009–5013 (2008). [CrossRef]
  15. E. Feigenbaum and M. Orenstein, “Plasmon-soliton,” Opt. Lett. 32, 674–676 (2007). [CrossRef] [PubMed]
  16. A. R. Davoyan, I. V. Shadrivov, and Yu. S. Kivshar, “Self-focusing and spatial plasmon-polariton solitons,” Opt. Express 17, 21732–21737 (2009). [CrossRef] [PubMed]
  17. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007). [CrossRef]
  18. I. Neokosmidis, T. Kamalakis, and T. Sphicopoulos, “Optical delay lines based on soliton propagation in photonic crystal coupled resonator optical waveguides,” IEEE J. Quantum Electron. 43, 560–567 (2007). [CrossRef]
  19. A. Theocharidis, T. Kamalakis, A. Chipouras, and T. Sphicopoulos, “Linear and nonlinear optical pulse propagation in photonic crystal waveguides near the band edge,” IEEE J. Quantum Electron. 44, 1020–1027 (2008). [CrossRef]
  20. C. F. Bohren and D. R. Huffman, “Classical theories of optical constants,” in Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  21. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991).
  22. G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895–897 (2006). [CrossRef] [PubMed]
  23. P. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.1–13 (2010). [CrossRef]
  24. F. Michelotti, L. Dominici, L. Descrovi, N. Danz, and F. Menchini, “Thickness dependence of surface plasmon polariton dispersion in transparent conducting oxide films at 1.55 μm,” Opt. Lett. 34, 839–841 (2009). [CrossRef] [PubMed]
  25. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002). [CrossRef]
  26. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007). [CrossRef] [PubMed]
  27. S. Afshar V. and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009). [CrossRef]
  28. B. A. Daniel and G. P. Agrawal, “Vectorial nonlinear propagation in silicon nanowire waveguides: polarization effects,” J. Opt. Soc. Am. B 27, 956–965 (2010). [CrossRef]
  29. J. Leuthold, W. Freude, C. Koos, T. Vallaitis, J.-M. Brosi, S. Bogatcher, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, and F. Diederich, “Silicon–Organic Hybrid (SOH)—A platform for ultrafast optics,” in Proceedings of European Conference on Optical Communications (ECOC) (OVE, 2009), paper 5.2.4.
  30. M. L. Scimeca, B. Esembeson, I. Biaggio, T. Michinobu, and F. Diederich, “A high-optical-quality supramolecular assembly for third-order nonlinear optics,” in Proceedings of Conference on Lasers and Electro-optics (CLEO) (Optical Society of America, 2009).
  31. J. A. Dionne, L. A. Seatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005). [CrossRef]
  32. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, and K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16, 1385–1392 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited