OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 9 — Sep. 1, 2010
  • pp: 1757–1762

Heterostructure-based optical absorbers

Gui-qiang Du, Hai-tao Jiang, Zhan-shan Wang, Ya-ping Yang, Zi-li Wang, Hai-qing Lin, and Hong Chen  »View Author Affiliations


JOSA B, Vol. 27, Issue 9, pp. 1757-1762 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001757


View Full Text Article

Enhanced HTML    Acrobat PDF (857 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have fabricated optical absorbers based on heterostructures composed of thick metallic films and truncated all-dielectric photonic crystals. Under the tunneling mechanism, the light can enter the heterostructure without reflection and is greatly absorbed due to the strong local-field enhancement in the metallic film. With the increase in the thickness of the metal, the absorbance will tend to unity. Experiments, in good agreement with the simulations, demonstrate a maximum of absorbance close to 98%. Possible methods to realize a wide-angle or/and wideband absorption are also given.

© 2010 Optical Society of America

OCIS Codes
(350.2450) Other areas of optics : Filters, absorption
(160.3918) Materials : Metamaterials
(160.5298) Materials : Photonic crystals

ToC Category:
Materials

History
Original Manuscript: April 2, 2010
Revised Manuscript: June 16, 2010
Manuscript Accepted: July 13, 2010
Published: August 12, 2010

Citation
Gui-qiang Du, Hai-tao Jiang, Zhan-shan Wang, Ya-ping Yang, Zi-li Wang, Hai-qing Lin, and Hong Chen, "Heterostructure-based optical absorbers," J. Opt. Soc. Am. B 27, 1757-1762 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-9-1757


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. P. Yang, L. Ci, J. A. Bur, S. Y. Lin, and P. M. Ajayan, “Experimental observation of an extremely dark material made by a low-density nanotube array,” Nano Lett. 8, 446–451 (2008). [CrossRef] [PubMed]
  2. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padillal, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008). [CrossRef] [PubMed]
  3. F. Bilotti, L. Nucci, and L. Vegni, “An SRR based microwave absorber,” Microwave Opt. Technol. Lett. 48, 2171–2175 (2006). [CrossRef]
  4. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008). [CrossRef] [PubMed]
  5. B. Wang, T. Koschny, and C. M. Soukoulis, “Wide-angle and polarization-independent chiral metamaterial absorber,” Phys. Rev. B 80, 033108 (2009). [CrossRef]
  6. M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676–1678 (1998). [CrossRef]
  7. J. F. Yu, Y. F. Shen, X. H. Liu, R. T. Fu, J. Zi, and Z. Q. Zhu, “Absorption in one-dimensional metallic-dielectric photonic crystals,” J. Phys. Condens. Matter 16, L51–L56 (2004). [CrossRef]
  8. J. W. Dong, G. Q. Liang, Y. H. Chen, and H. Z. Wang, “Robust absorption broadband in one-dimensional metallic-dielectric quasi-periodic structure,” Opt. Express 14, 2014–2020 (2006). [CrossRef] [PubMed]
  9. M. G. Cappeddu, N. Savalli, S. Baglio, M. Scalora, W. Davenport, M. J. Bloemer, and M. C. Larciprete, “Tunable absorption resonance in electromechanical one-dimensional metallodielectric photonic band gap structures,” J. Appl. Phys. 102, 073531 (2007). [CrossRef]
  10. H.A.Macleod, ed., Thin-Film Optical Filters, 3rd ed. (Institute of Physics, 2001), p. 581.
  11. X. F. Li, Y. R. Chen, J. Miao, P. Zhou, Y. X. Zheng, L. Y. Chen, and Y. P. Lee, “High solar absorption of a multilayered thin film structure,” Opt. Express 15, 1907–1912 (2007). [CrossRef] [PubMed]
  12. I. T. Ritchie and B. Window, “Applications of thin graded-index films to solar absorbers,” Appl. Opt. 16, 1438–1443 (1977). [CrossRef] [PubMed]
  13. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Rios, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 066408 (2008). [CrossRef] [PubMed]
  14. N. Bonod, G. Tayeb, D. Maystre, S. Enoch, and E. Popov, “Total absorption of light by lamellar metallic gratings,” Opt. Express 16, 15431–15438 (2008). [CrossRef] [PubMed]
  15. T. V. Teperik, F. J. García De Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2, 299–301 (2008). [CrossRef]
  16. N. Bonod and E. Popov, “Total light absorption in a wide range of incidence by nanostructured metals without plasmons,” Opt. Lett. 33, 2398–2400 (2008). [CrossRef] [PubMed]
  17. G. Sun and C. T. Chan, “Frequency-selective absorption characteristics of a metal surface with embedded dielectric microspheres,” Phys. Rev. E 73, 036613 (2006). [CrossRef]
  18. A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2571 (2003). [CrossRef]
  19. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007). [CrossRef]
  20. J. Guo, Y. Sun, Y. W. Zhang, H. Q. Li, H. T. Jiang, and H. Chen, “Experimental investigation of interface states in photonic crystal heterostructures,” Phys. Rev. E 78, 026607 (2008). [CrossRef]
  21. T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev, A. P. Vinogradov, M. Inoue, A. A. Lisyansky, and A. B. Granovsky, “Optical Tamm states in one-dimensional magnetophotonic structures,” Phys. Rev. Lett. 101, 113902 (2008). [CrossRef] [PubMed]
  22. G. Q. Du, H. T. Jiang, Z. S. Wang, and H. Chen, “Optical nonlinearity enhancement in heterostructures with thick metallic film and truncated photonic crystals,” Opt. Lett. 34, 578–580 (2009). [CrossRef] [PubMed]
  23. A.Yariv and P.Yeh, eds., Optical Waves in Crystals (Wiley, 1984).
  24. R. Biswas, Z. Y. Li, and K. M. Ho, “Impedance of photonic crystals and photonic crystal waveguides,” Appl. Phys. Lett. 84, 1254–1256 (2004). [CrossRef]
  25. K. Busch, C. T. Chan, and C. M. Soukoulis, Photonic Band Gap Materials (Kluwer, 1996).
  26. Special explanation: since the absorption coefficient of the metallic film is generally smaller than that of bulk metal in , we select the refractive indices of silver film in Table .
  27. J. C. Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constants n, h and the thickness of a weakly absorbing thin film,” J. Phys. E 9, 1002–1004 (1976). [CrossRef]
  28. E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  29. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).
  30. C. M. Rappaport and B. J. McCartin, “FDFD analysis of electromagnetic scattering in anisotropic media using unconstrained triangular meshes,” IEEE Trans. Antennas Propag. 39, 345–349 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited