OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 9 — Sep. 1, 2010
  • pp: 1769–1777

Polarized spectral properties and laser demonstration of Tm 3 + -doped LiGd ( MoO 4 ) 2 crystal

Jianfeng Tang, Yujin Chen, Yanfu Lin, Xinghong Gong, Jianhua Huang, Zundu Luo, and Yidong Huang  »View Author Affiliations

JOSA B, Vol. 27, Issue 9, pp. 1769-1777 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (758 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Trivalent thulium-doped LiGd ( MoO 4 ) 2 single crystals have been grown by the Czochralski method. Room-temperature polarized absorption and fluorescence spectra of the crystals were analyzed. The fluorescence decay curves of the G 1 4 , H 3 4 , and F 3 4 multiplets were measured, and the decay mechanisms of the G 1 4 and H 3 4 multiplets were discussed. Spectroscopic parameters related to the laser operation around 1.90 μ m via the F 3 4 H 3 6 transition have been evaluated. Finally, end-pumped by a Ti:sapphire laser at 795 nm, the room-temperature quasi-continuous wave 1.9 μ m laser emission was demonstrated with a slope efficiency of 28%.

© 2010 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.5690) Materials : Rare-earth-doped materials

ToC Category:
Lasers and Laser Optics

Original Manuscript: April 20, 2010
Revised Manuscript: June 22, 2010
Manuscript Accepted: July 11, 2010
Published: August 12, 2010

Jianfeng Tang, Yujin Chen, Yanfu Lin, Xinghong Gong, Jianhua Huang, Zundu Luo, and Yidong Huang, "Polarized spectral properties and laser demonstration of Tm3+-doped LiGd(MoO4)2 crystal," J. Opt. Soc. Am. B 27, 1769-1777 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8, 1100–1128 (2007). [CrossRef]
  2. B. M. Walsh, “Review of Tm and Ho materials; spectroscopy and lasers,” Laser Phys. 19, 855–866 (2009). [CrossRef]
  3. L. F. Johnson, G. D. Boyd, and K. Nassau, “Optical maser characteristics of Tm+3 in CaWO4,” Proc. IRE 50, 86–87 (1962). [CrossRef]
  4. L. F. Johnson, J. E. Geusic, and L. G. Van Uitert, “Coherent oscillations from Tm3+, Ho3+, Yb3+ and Er3+ ions in ytterbium aluminum garnet,” Appl. Phys. Lett. 7, 127–129 (1965). [CrossRef]
  5. F. Cornacchia, A. Toncelli, and M. Tonelli, “2-μm lasers with fluoride crystals: Research and development,” Prog. Quantum Electron. 33, 61–109 (2009). [CrossRef]
  6. M. Schellhorn, S. Ngcobo, and C. Bollig, “High-power diode-pumped Tm:YLF slab laser,” Appl. Phys. B 94, 195–198 (2009). [CrossRef]
  7. N. Coluccelli, G. Galzerano, P. Laporta, F. Cornacchia, D. Parisi, and M. Tonelli, “Tm-doped LiLuF4 crystal for efficient laser action in the wavelength range from 1.82 to 2.06 μm,” Opt. Lett. 32, 2040–2042 (2007). [CrossRef] [PubMed]
  8. F. Cornacchia, D. Parisi, C. Bernardini, A. Toncelli, and M. Tonelli, “Efficient, diode-pumped Tm3+:BaY2F8 vibronic laser,” Opt. Express 12, 1982–1989 (2004). [CrossRef] [PubMed]
  9. C. Li, J. Song, D. Y. Shen, N. S. Kim, K.-i. Ueda, Y. J. Huo, S. F. He, and Y. H. Cao, “Diode-pumped high-efficiency Tm:YAG lasers,” Opt. Express 4, 12–18 (1999). [CrossRef] [PubMed]
  10. H. Kalaycioglu and A. Sennaroglu, “Low-threshold continuous-wave Tm3+:YAlO3 laser,” Opt. Commun. 281, 4071–4074 (2008). [CrossRef]
  11. J. J. Zayhowski, J. Harrison, C. Dill III, and J. Ochoa, “Tm:YVO4 microchip laser,” Appl. Opt. 34, 435–437 (1995). [CrossRef] [PubMed]
  12. Y. Urata and S. Wada, “808-nm diode-pumped continuous-wave Tm:GdVO4 laser at room temperature,” Appl. Opt. 44, 3087–3092 (2005). [CrossRef] [PubMed]
  13. J. M. Cano-Torres, M. D. Serrano, C. Zaldo, M. Rico, X. Mateos, J. Liu, U. Griebner, V. Petrov, F. J. Valle, M. Galán, and G. Viera, “Broadly tunable laser operation near 2 μm in a locally disordered crystal of Tm3+-doped NaGd(WO4)2,” J. Opt. Soc. Am. B 23, 2494–2502 (2006). [CrossRef]
  14. X. Mateos, V. Petrov, J. H. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galán, and G. Viera, “Efficient 2 μm continuous-wave laser oscillation of Tm3+:KLu(WO4)2,” IEEE J. Quantum Electron. 42, 1008–1015 (2006). [CrossRef]
  15. W. J. Guo, Y. J. Chen, Y. F. Lin, Z. D. Luo, X. H. Gong, and Y. D. Huang, “Spectroscopic properties and laser performance of e of Tm3+-doped NaLa(MoO4)2 crystal,” J. Appl. Phys. 103, 093106 (2008). [CrossRef]
  16. V. Petrov, F. Güell, J. Massons, J. Gavalda, R. M. Sole, M. Aguilo, F. Diaz, and U. Griebner, “Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature,” IEEE J. Quantum Electron. 40, 1244–1251 (2004). [CrossRef]
  17. M. Rico, U. Griebner, V. Petrov, P. Ortega, X. Han, C. Cascales, and C. Zaldo, “Growth, spectroscopy, and tunable laser operation of the disordered crystal LiGd(MoO4)2 doped with ytterbium,” J. Opt. Soc. Am. B 23, 1083–1090 (2006). [CrossRef]
  18. V. Sudesh and K. Asai, “Spectroscopic and diode-pumped-laser properties of Tm, Ho:YLF; Tm, Ho:LuLF; and Tm, Ho:LuAG crystals: a comparative study,” J. Opt. Soc. Am. B 20, 1829–1837 (2003). [CrossRef]
  19. P. X. Song, Z. W. Zhao, X. D. Xu, B. X. Jang, P. Z. Deng, and J. Xu, “Growth and properties of Tm:YAG crystals,” J. Cryst. Growth 270, 433–437 (2004). [CrossRef]
  20. K. Ohta, H. Saito, and M. Obara, “Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm,” J. Appl. Phys. 73, 3149–3152 (1993). [CrossRef]
  21. O. Silvestre, M. C. Pujol, M. Rico, F. Güell, M. Aguiló, and F. Díaz, “Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy,” Appl. Phys. B 87, 707–716 (2007). [CrossRef]
  22. A. A. Kaminskii, A. A. Mayer, N. S. Nikonova, M. V. Provotorov, and S. E. Sarkisov, “Stimulated emission from the new LiGd(MoO4)2:Nd3+ crystal laser,” Phys. Status Solidi A 12, K73–K75 (1972). [CrossRef]
  23. V. Petrov, M. Rico, J. Liu, U. Griebner, X. Mateos, J. M. Cano-Torres, V. Volkov, F. Esteban-Betegón, M. D. Serrano, X. Han, and C. Zaldo, “Continuous-wave laser operation of disordered double tungstate and molybdate crystals doped with ytterbium,” J. Non-Cryst. Solids 352, 2371–2375 (2006). [CrossRef]
  24. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750–761 (1962). [CrossRef]
  25. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511–520 (1962). [CrossRef]
  26. J. H. Huang, X. H. Gong, Y. J. Chen, Y. F. Lin, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth and spectral properties of Er3+:NaGd(WO4)2 crystal,” Mater. Lett. 61, 3400–3403 (2007). [CrossRef]
  27. H. M. Zhu, Y. J. Chen, Y. F. Lin, X. H. Gong, Q. G. Tan, Z. D. Luo, and Y. D. Huang, “Growth, spectral properties, and laser demonstration of Yb3+:BaGd2(MoO4)4 cleavage crystal,” J. Appl. Phys. 101, 063109 (2007). [CrossRef]
  28. F. B. Xiong, Z. D. Luo, and Y. D. Huang, “Spectroscopic pic properties of Tm3+ in anisotropic PbWO4 crystal,” Appl. Phys. B 80, 321–328 (2005). [CrossRef]
  29. J. S. Liao, Y. F. Lin, Y. J. Chen, Z. D. Luo, E. Ma, X. H. Gong, Q. Q. Tan, and Y. D. Huang, “Radiative-trapping and fluorescence-concentration quenching effects of Yb:YAl3(BO3)4 crystals,” J. Opt. Soc. Am. B 23, 2572–2580 (2006). [CrossRef]
  30. B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998). [CrossRef]
  31. W. F. Krupke and J. B. Gruber, “Optical-absorption intensities of rare-earth ions in crystals: the absorption spectrum of thulium ethyl sulfate,” Phys. Rev. 139, A2008–A2016 (1965). [CrossRef]
  32. Z. D. Luo, X. Y. Chen, and T. J. Zhao, “Judd–Ofelt parameter analysis of rare earth anisotropic crystals by three perpendicular unpolarized absorption measurements,” Opt. Commun. 134, 415–422 (1997). [CrossRef]
  33. T. T. Basiev, A. A. Sobol, P. G. Zverev, L. I. Ivleva, V. V. Osiko, and R. C. Powell, “Raman spectroscopy of crystals for stimulated Raman scattering,” Opt. Mater. 11, 307–314 (1999). [CrossRef]
  34. Y. K. Voron’ko, E. V. Zharikov, D. A. Lis, A. V. Popov, V. A. Smirnov, K. A. Subbotin, M. N. Khromov, and V. V. Voronov, “Growth and spectroscopic studies of NaLa(MoO4)2:Tm3+ crystals: A new promising laser material,” Opt. Spectrosc. 105, 538–546 (2008). [CrossRef]
  35. W. J. Guo, Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Spectroscopic analysis and laser performance of Tm3+:NaGd(MoO4)2 crystal,” J. Phys. D: Appl. Phys. 41, 115409 (2008). [CrossRef]
  36. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954–A957 (1964). [CrossRef]
  37. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992). [CrossRef]
  38. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986). [CrossRef]
  39. G. C. Righini and M. Ferrari, “Photoluminescence of rare-earth-doped glasses,” Riv. Nuovo Cimento 28, 1–53 (2005).
  40. M. J. Weber, “Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,” Phys. Rev. B 4, 2932–2939 (1971). [CrossRef]
  41. W. E. Blumberg, “Nuclear spin-lattice relaxation caused by paramagnetic impurities,” Phys. Rev. 119, 79–84 (1960). [CrossRef]
  42. D. L. Huber, “Fluorescence in the presence of traps,” Phys. Rev. B 20, 2307–2314 (1979). [CrossRef]
  43. M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965). [CrossRef]
  44. M. Yokota and O. Tanimoto, “Effects of diffusion on energy transfer by resonance,” J. Phys. Soc. Jpn. 22, 779–784 (1967). [CrossRef]
  45. I. R. Martín, V. D. Rodríguez, U. R. Rodríguez-Mendoza, V. Lavín, E. Montoya, and D. Jaque, “Energy transfer with migration. Generalization of the Yokota–Tanimoto model for any kind of multipole interaction,” J. Chem. Phys. 111, 1191–1194 (1999). [CrossRef]
  46. A. I. Burshteĭn, “Hopping mechanism of energy transfer,” Sov. Phys. JETP 35, 882–885 (1972).
  47. H. C. Chow and R. C. Powell, “Models for energy transfer in solids,” Phys. Rev. B 21, 3785–3792 (1980). [CrossRef]
  48. C. M. Lawson, E. E. Freed, and R. C. Powell, “Models for energy transfer in solids,” J. Chem. Phys. 76, 4171–4177 (1982). [CrossRef]
  49. B. M. Walsh, “Judd–Ofelt theory: principles and practices,” in Advances in Spectroscopy for Lasers and Sensing, B.Di Bartolo and O.Forte, eds. (Springer, 2006), pp. 403–433. [CrossRef]
  50. X. M. Han, J. M. Cano-Torres, M. Rico, C. Cascales, C. Zaldo, X. Mateos, S. Rivier, U. Griebner, and V. Petrov, “Spectroscopy and efficient laser operation near 1.95 μm of Tm3+ in disordered NaLu(WO4)2,” J. Appl. Phys. 103, 083110 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited