OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 9 — Sep. 1, 2010
  • pp: 1792–1798

Polarization qubit phase gate between two far-infrared pulses in three-coupled quantum wells

Xiangying Hao, Liu-Gang Si, Chunling Ding, Pei Huang, Jiahua Li, and Xiaoxue Yang  »View Author Affiliations


JOSA B, Vol. 27, Issue 9, pp. 1792-1798 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001792


View Full Text Article

Enhanced HTML    Acrobat PDF (261 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The cross-Kerr nonlinearity arising between two far-infrared (FIR) pulses is investigated in a three-coupled-quantum-well (TCQW) structure based on intersubband transitions. The results show that the giant Kerr nonlinearity with a relatively large cross-phase-modulation phase shift can be used for realizing polarization quantum phase gate in this TCQW structure. Such a semiconductor system is much more practical than its atomic counterpart because of its flexible design and the wide tunable parameters. This protocol may have potential applications in FIR all-optical switch design and quantum information processing with solid-state materials.

© 2010 Optical Society of America

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(270.0270) Quantum optics : Quantum optics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: May 19, 2010
Revised Manuscript: July 13, 2010
Manuscript Accepted: July 15, 2010
Published: August 12, 2010

Citation
Xiangying Hao, Liu-Gang Si, Chunling Ding, Pei Huang, Jiahua Li, and Xiaoxue Yang, "Polarization qubit phase gate between two far-infrared pulses in three-coupled quantum wells," J. Opt. Soc. Am. B 27, 1792-1798 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-9-1792


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. S. Zubairy, A. B. Matsko, and M. O. Scully, “Resonant enhancement of high-order optical nonlinearities based on atomic coherence,” Phys. Rev. A 65, 043804 (2002). [CrossRef]
  2. C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003). [CrossRef] [PubMed]
  3. S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004). [CrossRef]
  4. C. Hang, Y. Li, L. Ma, and G. Huang, “Three-way entanglement and three-qubit phase gate based on a coherent six-level atomic system,” Phys. Rev. A 74, 012319 (2006). [CrossRef]
  5. P. Li, Y. Gu, L. Wang, and Q. Gong, “Fifth-order nonlinearity and 3-qubit phase gate in a five-level tripod atomic system,” J. Opt. Soc. Am. B 25, 504–512 (2008). [CrossRef]
  6. A. Joshi and M. Xiao, “Phase gate with a four-level inverted-Y system,” Phys. Rev. A 72, 062319 (2005). [CrossRef]
  7. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).
  8. H. Schmidt and A. Imamoğlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996). [CrossRef] [PubMed]
  9. D. Petrosyan and G. Kurizki, “Symmetric photon-photon coupling by atoms with Zeeman-split sublevels,” Phys. Rev. A 65, 033833 (2002). [CrossRef]
  10. H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91, 093601 (2003). [CrossRef] [PubMed]
  11. D. Petrosyan and Yu. P. Malakyan, “Magneto-optical rotation and cross-phase modulation via coherently driven four-level atoms in a tripod configuration,” Phys. Rev. A 70, 023822 (2004). [CrossRef]
  12. D. E. Nikonov, A. Imamoğlu, and M. O. Scully, “Fano interference of collective excitations in semiconductor quantum wells and lasing without inversion,” Phys. Rev. B 59, 12212–12215 (1999). [CrossRef]
  13. G. B. Serapiglia, E. Paspalakis, C. Sirtori, K. L. Vodopyanov, and C. C. Phillips, “Laser-induced quantum coherence in a semiconductor quantum well,” Phys. Rev. Lett. 84, 1019–1022 (2000). [CrossRef] [PubMed]
  14. L. Silvestri, F. Bassani, G. Czajkowski, and B. Davoudi, “Electromagnetically induced transparency in asymmetric double quantum wells,” Eur. Phys. J. B 27, 89–102 (2002). [CrossRef]
  15. M. Phillips and H. Wang, “Electromagnetically induced transparency due to intervalence band coherence in a GaAs quantum well,” Opt. Lett. 28, 831–833 (2003). [CrossRef] [PubMed]
  16. A. Olaya-Castro, M. Korkusinski, P. Hawrylak, and M. Yu. Ivanov, “Effective Bloch equations for strongly driven modulation-doped quantum wells,” Phys. Rev. B 68, 155305 (2003). [CrossRef]
  17. A. Joshi and M. Xiao, “Optical bistability in a three-level semiconductor quantum-well system,” Appl. Phys. B 79, 65–69 (2004). [CrossRef]
  18. A. A. Batista and D. S. Citrin, “Rabi flopping in a two-level system with a time-dependent energy renormalization: intersubband transitions in quantum wells,” Phys. Rev. Lett. 92, 127404 (2004). [CrossRef] [PubMed]
  19. E. Paspalakis, M. Tsaousidou, and A. F. Terzis, “Rabi oscillations in a strongly driven semiconductor quantum well,” J. Appl. Phys. 100, 044312 (2006). [CrossRef]
  20. A. A. Batista and D. S. Citrin, “Quantum control with linear chirp in two-subband n-type doped quantum wells,” Phys. Rev. B 74, 195318 (2006). [CrossRef]
  21. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ. Press, 1997).
  22. R. Atanasov, A. Haché, J. L. P. Hughes, H. M. van Driel, and J. E. Sipe, “Coherent control of photocurrent generation in bulk semiconductors,” Phys. Rev. Lett. 76, 1703–1706 (1996). [CrossRef] [PubMed]
  23. M. D. Frogley, J. F. Dynes, M. Beck, J. Faist, and C. C. Phillips, “Gain without inversion in semiconductor nanostructures,” Nature Mater. 5, 175–178 (2006). [CrossRef]
  24. H. Schmidt, K. L. Campman, A. C. Gossard, and A. Imamoğlu, “Tunneling induced transparency: Fano interference in intersubband transitions,” Appl. Phys. Lett. 70, 3455–3457 (1997). [CrossRef]
  25. J. F. Dynes, M. D. Frogley, M. Beck, J. Faist, and C. C. Phillips, “ac Stark splitting and quantum interference with intersubband transitions in quantum wells,” Phys. Rev. Lett. 94, 157403 (2005). [CrossRef] [PubMed]
  26. J. Faist, F. Capasso, C. Sirtori, K. W. West, and L. N. Pfeiffer, “Controlling the sign of quantum interference by tunnelling from quantum wells,” Nature 390, 589–591 (1997). [CrossRef]
  27. H. Sun, Y. Niu, R. Li, S. Jin, and S. Gong, “Tunneling-induced large cross-phase modulation in an asymmetric quantum well,” Opt. Lett. 32, 2475–2477 (2007). [CrossRef] [PubMed]
  28. W. X. Yang, J. M. Hou, Y. Y. Lin, and R. K. Lee, “Detuning management of optical solitons in coupled quantum wells,” Phys. Rev. A 79, 033825 (2009). [CrossRef]
  29. J. Li, R. Yu, L. Si, X. Lü, and X. Yang, “Propagation of a voltage-controlled infrared laser pulse and electro-optic switch in a coupled quantum-dot nanostructure,” J. Phys. B 42, 055509 (2009). [CrossRef]
  30. J. F. Dynes and E. Paspalakis, “Phase control of electron population, absorption, and dispersion properties of a semiconductor quantum well,” Phys. Rev. B 73, 233305 (2006). [CrossRef]
  31. W. X. Yang and R. K. Lee, “Controllable entanglement and polarization phase gate in coupled double quantum-well structures,” Opt. Express 16, 17161–17170 (2008). [CrossRef] [PubMed]
  32. X. Hao, W. X. Yang, X. Lü, J. Liu, P. Huang, C. Ding, and X. Yang, “Polarization qubit phase gate in a coupled quantum-well nanostructure,” Phys. Lett. A 372, 7081–7085 (2008). [CrossRef]
  33. G. Bastard, “Superlattice band structure in the envelope-function approximation,” Phys. Rev. B 24, 5693–5697 (1981). [CrossRef]
  34. D. F. Nelson, R. C. Miller, and D. A. Kleinmann, “Band nonparabolicity effects in semiconductor quantum wells,” Phys. Rev. B 35, 7770–7773 (1987); nonparabolicities were taken into account using this method. [CrossRef]
  35. C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Giant, triply resonant, third-order nonlinear susceptibility χ3ω3 in coupled quantum wells,” Phys. Rev. Lett. 68, 1010–1013 (1992); the values of the AlInAs/GaInAs parameters used are ΔEc=530 meV, me∗=0.043m0, and γ(nonparabolicity coefficient)=1.03×10−18 m2. [CrossRef] [PubMed]
  36. C. Sirtori, F. Capasso, J. Faist, and S. Scandolo, “Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum wells,” Phys. Rev. B 50, 8663–8674 (1994). [CrossRef]
  37. C. Sirtori, F. Capasso, D. L. Sivco, and A. Y. Cho, “Resonant multiphoton electron emission from a quantum well,” Appl. Phys. Lett. 60, 2678–2680 (1992). [CrossRef]
  38. Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005). [CrossRef]
  39. Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004). [CrossRef] [PubMed]
  40. H. Schmidt and A. Imamoğlu, “Nonlinear optical devices based on a transparency in semiconductor intersubband transitions,” Opt. Commun. 131, 333–338 (1996). [CrossRef]
  41. J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 057401 (2005). [CrossRef] [PubMed]
  42. Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007). [CrossRef]
  43. Y. Wu, “Matched soliton pairs of four-wave mixing in molecular magnets,” J. Appl. Phys. 103, 104903 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited