OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 9 — Sep. 1, 2010
  • pp: 1804–1812

Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part III. Primary radical generation and inhibition

Michael R. Gleeson, Shui Liu, Jinxin Guo, and John T. Sheridan  »View Author Affiliations


JOSA B, Vol. 27, Issue 9, pp. 1804-1812 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001804


View Full Text Article

Enhanced HTML    Acrobat PDF (406 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photopolymers are playing an ever more important role in diverse areas of research such as holographic data storage, hybrid photonic circuits, and solitary waves. In each of these applications, the production of primary radicals is the driving force of the polymerization processes. Therefore an understanding of the production, removal, and scavenging processes of free radicals in a photopolymer system is crucial in determining a material’s response to a given exposure. One such scavenging process is inhibition. In this paper the non-local photo-polymerization driven diffusion model is extended to more accurately model the effects of (i) time varying primary radical production, (ii) the rate of removal of photosensitizer, and (iii) inhibition. The model is presented to specifically analyze the effects of inhibition, which occur most predominantly at the start of grating growth, and comparisons between theory and experiment are performed which quantify these effects.

© 2010 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(090.2900) Holography : Optical storage materials
(090.7330) Holography : Volume gratings
(160.5470) Materials : Polymers
(300.1030) Spectroscopy : Absorption
(160.5335) Materials : Photosensitive materials

ToC Category:
Materials

History
Original Manuscript: April 13, 2010
Revised Manuscript: July 5, 2010
Manuscript Accepted: July 5, 2010
Published: August 13, 2010

Citation
Michael R. Gleeson, Shui Liu, Jinxin Guo, and John T. Sheridan, "Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part III. Primary radical generation and inhibition," J. Opt. Soc. Am. B 27, 1804-1812 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-9-1804


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. H. Bamford, A. D. Jenkins, and R. Johnston, “Termination by primary radicals in vinyl polymerization,” Trans. Faraday Soc. 55, 1451–1460 (1959). [CrossRef]
  2. C. Decker, B. Elzaouk, and D. Decker, “Kinetic study of ultrafast photopolymerizations reactions,” J. Macromol. Sci., Pure Appl. Chem. 33, 173–190 (1996). [CrossRef]
  3. M. D. Goodner, H. R. Lee, and C. N. Bowman, “Method for determining the kinetic parameters in diffusion-controlled free-radical homopolymerizations,” Ind. Eng. Chem. Res. 36, 1247–1252 (1997). [CrossRef]
  4. M. D. Goodner and C. N. Bowman, “Modeling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromolecules 32, 6552–6559 (1999). [CrossRef]
  5. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449–463 (2001). [CrossRef]
  6. S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639–662 (2003). [CrossRef]
  7. M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007). [CrossRef]
  8. M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396–406 (2008). [CrossRef]
  9. M. R. Gleeson and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part I. Modelling,” J. Opt. Soc. Am. B 26, 1736–1745 (2009). [CrossRef]
  10. M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Non-local photo-polymerization kinetics including multiple termination mechanisms and dark reactions: Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009). [CrossRef]
  11. L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes, and F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24, 487–489 (1999). [CrossRef]
  12. S. Schultz, E. Glytsis, and T. Gaylord, “Design, fabrication, and performance of preferential-order volume grating waveguide couplers,” Appl. Opt. 39, 1223–1232 (2000). [CrossRef]
  13. A. Sato, M. Scepanovic, and R. Kostuk, “Holographic edge-illuminated polymer Bragg gratings for dense wavelength division optical filters at 1550 nm,” Appl. Opt. 42, 778–784 (2003). [CrossRef] [PubMed]
  14. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, “Microholographic multilayer optical disk data storage,” Appl. Opt. 44, 3197–3207 (2005). [CrossRef] [PubMed]
  15. F. Bruder and T. Faecke, “Materials in optical data storage,” Int. J. Mater. Res. 101, 199–215 (2010). [CrossRef]
  16. InPhase Technologies, Tapestry Media, www.inphase-technologies.com.
  17. M. Straub, L. H. Nguyen, A. Fazlic, and M. Gu, “Complex-shaped 3-D microstructures and photonic crystals generated in a polysiloxane polymer by two-photon microstereolithography,” Opt. Mater. 27, 359–364 (2004). [CrossRef]
  18. J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128, 406–407 (2006). [CrossRef] [PubMed]
  19. G. H. Zhao and P. Mouroulis, “Diffusion-model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939 (1994). [CrossRef]
  20. S. Piazzolla and B. K. Jenkins, “Holographic grating formation in photopolymers,” Opt. Lett. 21, 1075–1077 (1996). [CrossRef] [PubMed]
  21. V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913–5923 (1997). [CrossRef]
  22. D. J. Lougnot, P. Jost, and L. Lavielle, “Polymers for holographic recording. VI. Some basic ideas for modelling the kinetics of the recording process,” Pure Appl. Opt. 6, 225–245 (1997). [CrossRef]
  23. I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: Theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465–1477 (1998). [CrossRef]
  24. J. H. Kwon, H. C. Hwang, and K. C. Woo, “Analysis of temporal behavior of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B 16, 1651–1657 (1999). [CrossRef]
  25. J. T. Sheridan and J. R. Lawrence, “Nonlocal response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000). [CrossRef]
  26. C. Neipp, S. Gallego, M. Ortuno, A. Marquez, M. L. Alvarez, A. Belendez, and I. Pascual, “First-harmonic diffusion-based model applied to a polyvinyl-alcohol—acrylamide-based photopolymer,” J. Opt. Soc. Am. B 20, 2052–2060 (2003). [CrossRef]
  27. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990–7004 (2005). [CrossRef] [PubMed]
  28. J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotechnol. 7, 232–242 (2007). [PubMed]
  29. M. R. Gleeson and J. T. Sheridan, “A review of the modelling of free-radical photopolymerisation in the formation of holographic gratings,” J. Opt. A, Pure Appl. Opt. 11, 024008 (2009). [CrossRef]
  30. T. Trentler, J. Boyd, and V. Colvin, “Epoxy resin photopolymer composites for volume holography,” Chem. Mater. 12, 1431–1438 (2000). [CrossRef]
  31. M. R. Gleeson, S. Liu, S. O’Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008). [CrossRef]
  32. S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528–536 (2009). [CrossRef]
  33. S. Liu, M. R. Gleeson, D. Sabol, and J. T. Sheridan, “Extended model of the photoinitiation mechanisms in photopolymer materials,” J. Appl. Phys. 106, 104911 (2009). [CrossRef]
  34. S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “Optical characterization of photopolymers materials: Theoretical and experimental examination of primary radical generation,” Appl. Phys. B 100, 559–569 (2010). [CrossRef]
  35. L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, A. Belendez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496–4499 (1998). [CrossRef]
  36. S. Gallego, M. Ortuno, C. Neipp, A. Marquez, A. Belendez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13, 1939–1947 (2005). [CrossRef] [PubMed]
  37. G. Odian, Principles of Polymerization (Wiley, 1991).
  38. A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40, 699–706 (1993). [CrossRef]
  39. M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006). [CrossRef]
  40. F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol solvent,” J. Opt. A, Pure Appl. Opt. 3, 20–25 (2001). [CrossRef]
  41. J. Crank, The Mathematics of Diffusion, 2nd ed. (Oxford Univ. Press, 1976).
  42. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2945 (1969).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited