OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 9 — Sep. 1, 2010
  • pp: 1828–1832

Topology optimization of grating couplers for the efficient excitation of surface plasmons

Jacob Andkjær, Shinji Nishiwaki, Tsuyoshi Nomura, and Ole Sigmund  »View Author Affiliations


JOSA B, Vol. 27, Issue 9, pp. 1828-1832 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001828


View Full Text Article

Enhanced HTML    Acrobat PDF (183 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a methodology for a systematic design of grating couplers for efficient excitation of surface plasmons at metal–dielectric interfaces. The methodology is based on a two-dimensional topology optimization formulation based on the H-polarized scalar Helmholtz equation and finite-element method simulations. The efficiency of the method is demonstrated by optimized designs for input and output grating couplers for an Ag-SiO 2 interface. The results indicate that slanted grove gratings may raise the coupling efficiency above 68% where the highest previously reported value was 50%.

© 2010 Optical Society of America

OCIS Codes
(050.1590) Diffraction and gratings : Chirping
(050.2770) Diffraction and gratings : Gratings
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Diffraction and Gratings

History
Original Manuscript: June 15, 2010
Manuscript Accepted: June 26, 2010
Published: August 18, 2010

Citation
Jacob Andkjær, Shinji Nishiwaki, Tsuyoshi Nomura, and Ole Sigmund, "Topology optimization of grating couplers for the efficient excitation of surface plasmons," J. Opt. Soc. Am. B 27, 1828-1832 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-9-1828


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. W. L. Barnes, “Turning the tables on surface plasmons,” Nature Mater. 3, 588–589 (2004). [CrossRef]
  3. P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, “The role of surface plasmons in organic light-emitting diodes,” IEEE J. Quantum Electron. 8, 378–386 (2002). [CrossRef]
  4. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008). [CrossRef]
  5. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56–63 (2007). [CrossRef] [PubMed]
  6. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  7. T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235–254 (1977). [CrossRef]
  8. C. Peng and W. A. Challener, “Input-grating couplers for narrow Gaussian beam: influence of groove depth,” Opt. Express 12, 6481–6490 (2004). [CrossRef] [PubMed]
  9. G. Leveque and O. J. F. Martin, “Numerical study and optimization of a diffraction grating for surface plasmon excitation,” Proc. SPIE 5927, 246–254 (2005).
  10. Y. Huang, “Optimal design for the grating coupler of surface plasmons,” in Proceedings of the COMSOL Conference (2008), 4980http://www.comsol.com/papers/4980.
  11. J. Lu, C. Petre, E. Yablonovitch, and J. Conway, “Numerical optimization of a grating coupler for the efficient excitation of surface plasmons at an Ag-SiO2 interface,” J. Opt. Soc. Am. B 24, 2268–2272 (2007). [CrossRef]
  12. M. P. Bendsøe and O. Sigmund, Topology Optimization: Theory, Methods and Applications (Springer-Verlag, 2003).
  13. M. P. Bendsøe and N. Kikuchi, “Generating optimal topologies in optimal design using a homogenization method,” Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988). [CrossRef]
  14. T. Borrvall and J. Petersson, “Topology optimization of fluids in Stokes flow,” Int. J. Numer. Methods Fluids 41, 77–107 (2003). [CrossRef]
  15. J. Jonsmann, O. Sigmund, and S. Bouwstra, “Compliant thermal microactuators,” Sens. Actuators, A 76, 463–469 (1999). [CrossRef]
  16. P. I. Borel, A. Harpøth, L. H. Frandsen, M. Kristensen, J. S. Jensen, P. Shi, and O. Sigmund, “Topology optimization and fabrication of photonic crystal structures,” Opt. Express 12, 1996–2001 (2004). [CrossRef] [PubMed]
  17. O. Sigmund, “Design of multiphysics actuators using topology optimization—Part I: One-material Structures,” Comput. Methods Appl. Mech. Eng. 190, 6577–6604 (2001). [CrossRef]
  18. U. D. Larsen, O. Sigmund, and S. Bouwstra, “Design and fabrication of compliant mechanisms and material structures with negative Poisson’s ratio,” J. Microelectromech. Syst. 6, 99–106 (1997). [CrossRef]
  19. O. Sigmund and S. Torquato, “Composites with extremal thermal expansion coefficients,” Appl. Phys. Lett. 69, 3203–3205 (1996). [CrossRef]
  20. M. Koshiba, Y. Tsuji, and S. Sasaki, “High-performance absorbing boundary conditions for photonic crystal waveguide simulations,” IEEE Microw. Wireless Compon. Lett. 11, 152–154 (2001). [CrossRef]
  21. J. S. Jensen and O. Sigmund, “Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide,” J. Opt. Soc. Am. B 22, 1191–1198 (2005). [CrossRef]
  22. O. Sigmund, “Morphology-based black and white filters for topology optimization,” Struct. Multidiscip. Optim. 33, 401–424 (2007). [CrossRef]
  23. J. K. Guest, “Topology optimization with multiple phase projection,” Comput. Methods Appl. Mech. Eng. 199, 123–135 (2009). [CrossRef]
  24. K. Svanberg, “A class of globally convergent optimization methods based on conservative convex separable approximations,” SIAM J. Optim. 12, 555–573 (2002). [CrossRef]
  25. EURYI, http://www.esf.org/euryi.
  26. TopAnt, http://www.topant.dtu.dk.
  27. http://www.topopt.dtu.dk.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited