OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 9 — Sep. 1, 2010
  • pp: 1845–1848

Asymmetric one-dimensional periodic slow-light waveguide

Chun Jiang  »View Author Affiliations

JOSA B, Vol. 27, Issue 9, pp. 1845-1848 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (421 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An asymmetric one-dimensional periodic waveguide is proposed for slowing light down. The waveguide consists of a straight dielectric strip and a single-side Bragg grating and thus is simple and easy for fabricating and has ultraflat dispersion relations in large wave-vector range supporting simultaneous ultralow-group-velocity- and zero-group-velocity-dispersion modes. It is numerically demonstrated that the modes can be localized in the waveguide.

© 2010 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(250.0250) Optoelectronics : Optoelectronics

ToC Category:

Original Manuscript: April 6, 2010
Revised Manuscript: July 5, 2010
Manuscript Accepted: July 8, 2010
Published: August 18, 2010

Chun Jiang, "Asymmetric one-dimensional periodic slow-light waveguide," J. Opt. Soc. Am. B 27, 1845-1848 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001). [CrossRef] [PubMed]
  2. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003). [CrossRef] [PubMed]
  3. E. Kim, M. Moewe, P. Palinginis, F. Sedgwick, S. Crankshaw, H. Wang, and C. J. Chang-Chuang, “Ultraslow light (<200 m/s) propagation in a semiconductor nanostructure,” Appl. Phys. Lett. 87, 171102 (2005). [CrossRef]
  4. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200–202 (2003). [CrossRef] [PubMed]
  5. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608–610 (2000). [CrossRef] [PubMed]
  6. M. Ibanescu, S. G. Johnson, D. Roundy, C. Luo, Y. Fink, and J. D. Joannopoulos, “Anomalous dispersion relations by symmetry breaking in axially uniform waveguides,” Phys. Rev. Lett. 92, 063903 (2004). [CrossRef] [PubMed]
  7. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljačić, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005). [CrossRef] [PubMed]
  8. M. Sandtke and L. Kuipers, “Slow guided surface plasmons at telecom frequencies,” Nat. Photonics 1, 573–576 (2007). [CrossRef]
  9. Q. Gan, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures,” Phys. Rev. Lett. 100, 256803 (2008). [CrossRef] [PubMed]
  10. J. Michaud, G. Fanjoux, H. Maillotte, L. Furfaro, and T. Sylvestre, “Slow light induced by stimulated Raman scattering on spatial Kerr soliton,” Ann. Phys. (Paris) 32, 103–106 (2007). [CrossRef]
  11. A. Cheng, M. P. Fok, and C. Shu, “Wavelength-transparent, stimulated-Brillouin-scattering slow light using cross-gain-modulation-based wavelength converter and Brillouin fiber laser,” Opt. Lett. 33, 2596–2598 (2008). [CrossRef] [PubMed]
  12. G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, and R. W. Boyd, “Observation of backward pulse propagation through a medium with a negative group velocity,” Science 312, 895–897 (2006). [CrossRef] [PubMed]
  13. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator a proposal and analysis optical waveguide,” Opt. Lett. 24, 711–713 (1999). [CrossRef]
  14. K. L. Tsakmakidis, A. D. Boadman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007). [CrossRef] [PubMed]
  15. R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Two regimes of slow-light losses revealed by adiabatic reduction of group velocity,” Phys. Rev. Lett. 101, 103901 (2008). [CrossRef] [PubMed]
  16. S. A. Rinne, F. G. Santamaria, and P. V. Braun, “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat. Photonics 2, 52–56 (2008). [CrossRef]
  17. S. Sandhu, M. L. Povinelli, and S. Fan, “Stopping and time reversing a light pulse using dynamic loss tuning of coupled-resonator delay lines,” Opt. Lett. 32, 3333–3335 (2007). [CrossRef] [PubMed]
  18. S. Sandhu, M. L. Povinelli, M. F. Yanik, and S. Fan, “Dynamically tuned coupled-resonator delay lines can be nearly dispersion free,” Opt. Lett. 31, 1985–1987 (2006). [CrossRef] [PubMed]
  19. D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398–9408 (2005). [CrossRef] [PubMed]
  20. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005). [CrossRef] [PubMed]
  21. S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2, 90–93 (2008). [CrossRef]
  22. J. T. Mok, C. M. Sterke, I. C. M. Littler, and B. J. Eggleton, “Dispersionless slow light using gap solitons,” Nat. Phys. 2, 775–780 (2006). [CrossRef]
  23. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, and N. F. Van Hulst, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005). [CrossRef] [PubMed]
  24. M. Povinelli, “Slow light: Variable speed limit,” Nat. Phys. 2, 735–736 (2006). [CrossRef]
  25. M. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13, 7145–7159 (2005). [CrossRef] [PubMed]
  26. D. A. Miller, “Fundamental limit to linear one-dimensional slow light structures,” Phys. Rev. Lett. 99, 203903 (2007). [CrossRef]
  27. A. Figotin and I. Vitebskiy, “Oblique frozen modes in periodic layered media,” Phys. Rev. E 68, 036609 (2003). [CrossRef]
  28. M. Soljacic, S. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopoulos,Photonic-crystal slow-light enhancement of nonlinear phase sensitivity,” J. Opt. Soc. Am. B 19, 2052–2059 (2002). [CrossRef]
  29. J. Ballato, A. Ballato, A. Figotin, and I. Vitebskiy, “Frozen light in periodic stacks of anisotropic layers,” Phys. Rev. E 71, 036612 (2005). [CrossRef]
  30. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 2008).
  31. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef] [PubMed]
  32. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in FDTD,” Opt. Lett. 31, 2972–2974 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited