OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 9 — Sep. 1, 2010
  • pp: 1857–1865

Quantum efficiency measurement of single-photon detectors using photon pairs generated in optical fibers

Xiaoying Li, Xiaoxin Ma, Limei Quan, Lei Yang, Liang Cui, and Xueshi Guo  »View Author Affiliations


JOSA B, Vol. 27, Issue 9, pp. 1857-1865 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001857


View Full Text Article

Enhanced HTML    Acrobat PDF (389 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using the correlated signal and idler photon pairs generated in a dispersion-shifted fiber by a pulsed pump, we measure the quantum efficiency of an InGaAs/InP avalanche photodiode-based single-photon detector. Since the collection efficiency of photon pairs is a key parameter to correctly deduce the quantum efficiency, we carefully characterize the collection efficiency by studying the correlation dependence of photon pairs on the spectra of pump, signal, and idler photons. This study allows us to obtain the quantum efficiency of the single-photon detector by using photon pairs with various kinds of bandwidth.

© 2010 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(120.3940) Instrumentation, measurement, and metrology : Metrology
(270.5290) Quantum optics : Photon statistics
(270.5570) Quantum optics : Quantum detectors
(190.4975) Nonlinear optics : Parametric processes

ToC Category:
Quantum Optics

History
Original Manuscript: June 4, 2010
Revised Manuscript: July 2, 2010
Manuscript Accepted: July 15, 2010
Published: August 18, 2010

Citation
Xiaoying Li, Xiaoxin Ma, Limei Quan, Lei Yang, Liang Cui, and Xueshi Guo, "Quantum efficiency measurement of single-photon detectors using photon pairs generated in optical fibers," J. Opt. Soc. Am. B 27, 1857-1865 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-9-1857


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
  2. D. Achilles, C. Silberhorn, and I. A. Walmsley, “Direct, loss-tolerant characterization of nonclassical photon statistics,” Phys. Rev. Lett. 97, 043602 (2006). [CrossRef] [PubMed]
  3. D. N. Klyshko, “Use of two-photon light for absolute calibration of photoelectric detectors,” Sov. J. Quantum Electron. 10, 1112–1116 (1980). [CrossRef]
  4. G. Brida, M. Genovese, and C. Novero, “An application of two-photon entangled states to quantum metrology,” J. Mod. Opt. 47, 2099–2104 (2000). [CrossRef]
  5. M. Ware and A. L. Migdall, “Single-photon detector characterization using correlated photons: the march from feasibility to metrology,” J. Mod. Opt. 51, 1549–1557 (2004).
  6. A. P. Worsley, H. B. Coldenstrodt-Ronge, J. S. Lundeen, P. J. Mosley, B. J. Smith, G. Puentes, N. Thomas-Peter, and I. A. Walmsley, “Absolute efficiency estimation of photon-number-resolving detectors using twin beams,” Opt. Express 17, 4397–4411 (2009). [CrossRef] [PubMed]
  7. D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970). [CrossRef]
  8. Z. Y. Ou and L. Mandel, “Violation of bell’s inequality and classical probability in a two-photon correlation experiment,” Phys. Rev. Lett. 61, 50–53 (1988). [CrossRef] [PubMed]
  9. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995). [CrossRef] [PubMed]
  10. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications,” IEEE Photon. Technol. Lett. 14, 983–985 (2002). [CrossRef]
  11. O. Alibart, J. Fulconis, G. K. L. Wong, S. G. Murdoch, W. J. Wadsworth, and J. G. Rarity, “Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment,” New J. Phys. 8, 67 (2006). [CrossRef]
  12. J. Fan, A. Dogariu, and L. J. Wang, “Generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 30, 1530–1532 (2005). [CrossRef] [PubMed]
  13. D. Bouwmeester, A. Ekert, and A. Zeilinger, The Physics of Quantum Information (Springer, 2000).
  14. A. V. Sergienko and G. S. Jaeger, “Quantum information processing and precise optical measurement with entangled-photon pairs,” Contemp. Phys. 44, 341–356 (2003). [CrossRef]
  15. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007). [CrossRef]
  16. J. Chen, J. B. Altepeter, M. Medic, K. F. Lee, B. Gokden, R. H. Hadfield, S. W. Nam, and P. Kumar, “Demonstration of a quantum controlled-not gate in the telecommunications band,” Phys. Rev. Lett. 100, 133603 (2008). [CrossRef] [PubMed]
  17. E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, “Spectrally bright and broad fiber-based heralded single-photon source,” Phys. Rev. A 78, 013844 (2008). [CrossRef]
  18. A. R. McMillan, J. Fulconis, M. Halder, C. Xiong, J. G. Rarity, and W. J. Wadsworth, “Narrowband high-fidelity all-fibre source of heralded single-photons at 1570 nm,” Opt. Express 17, 6156–6165 (2009). [CrossRef] [PubMed]
  19. J. G. Rarity, K. D. Ridley, and P. R. Tapster, “Absolute measurement of detector quantum efficiency using parametric downconversion,” Appl. Opt. 26, 4616–4619 (1987). [CrossRef] [PubMed]
  20. P. G. Kwiat, A. M. Steinberg, R. Y. Chiao, P. H. Eberhard, and M. D. Pertroff, “Absolute efficiency and time-response measurement of single-photon detectors,” Appl. Opt. 33, 1844–1852 (1994). [CrossRef] [PubMed]
  21. S. V. Polyakov and A. L. Migdall, “high-accuracy verification of a correlated photon based method for determining photon-counting detection efficiency,” Opt. Express 15, 1390–1407 (2007). [CrossRef] [PubMed]
  22. S. Odate, A. Yoshizawa, D. Fukuda, and H. Tsuchida, “Quantum efficiency measurements by bidirectional coincidence counting of correlated photon pairs,” Opt. Lett. 32, 3176–3178 (2007). [CrossRef] [PubMed]
  23. X. Li, X. Ma, Z. Y. Ou, L. Yang, L. Cui, and D. Yu, “Spectral study of photon pairs generated in dispersion-shifted fiber with a pulsed pump,” Opt. Express 16, 32–44 (2008). [CrossRef] [PubMed]
  24. X. Li, J. Chen, K. F. Lee, P. L. Voss, and P. Kumar, “All-fiber photon-pair source for quantum communication: Influence of spectra,” in Proceeding of Quantum Communication and Measurement (QCMC’06) (2006), pp. 31–34.
  25. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005). [CrossRef] [PubMed]
  26. J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005). [CrossRef]
  27. X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, “Integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A 73, 052301 (2006). [CrossRef]
  28. X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004). [CrossRef] [PubMed]
  29. X. Li, P. L. Voss, J. Chen, K. F. Lee, and P. Kumar, “Measurement of co- and cross-polarized Raman spectra in silica fiber for small detunings,” Opt. Express 13, 2236–2244 (2005). [CrossRef] [PubMed]
  30. P. L. Voss, K. G. Koprulu, S. Choi, S. Dugan, and P. Kumar, “14 MHz rate photon-counting with room temperature InGaAs/InP avalanche photodiodes,” J. Mod. Opt. 51, 1369–1379 (2004).
  31. X. Ma, L. Yang, L. Cui, X. Guo, and X. Li are preparing a paper to be called “Optimization of the fiber based sources of near degenerate photon pairs: Influence of self-phase modulation.”
  32. X. Li, L. Yang, L. Cui, Z. Y. Ou, and D. Yu, “Fiber-based source of photon pairs at telecom band with high temporal coherence and brightness for quantum information processing,” Opt. Lett. 33, 593–595 (2008). [CrossRef] [PubMed]
  33. J. Oh, C. Antonelli, M. Tur, and M. Brodsky, “Method for characterizing single-photon detectors in saturation regime by cw laser,” Opt. Express 18, 5906–5911 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited