OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 9 — Sep. 1, 2010
  • pp: 1866–1873

The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range

Chan-Shan Yang, Chia-Jen Lin, Ru-Pin Pan, Christopher T. Que, Kohji Yamamoto, Masahiko Tani, and Ci-Ling Pan  »View Author Affiliations


JOSA B, Vol. 27, Issue 9, pp. 1866-1873 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001866


View Full Text Article

Enhanced HTML    Acrobat PDF (903 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have used terahertz time-domain spectroscopy to investigate the complex optical constants and birefringence of a widely used liquid crystal mixture E7 in both nematic and isotropic phases ( 26 ° C 70 ° C ) . The extinction coefficient of E7 at room temperature is less than 0.035 and without sharp absorption features in the frequency range of 0.2–2.0 THz. The extraordinary ( n e ) and ordinary ( n o ) indices of refraction at 26 ° C are 1.690–1.704 and 1.557–1.581, respectively, giving rise to a birefringence of 0.130–0.148 in this frequency range. The temperature-dependent ( 26 ° C 70 ° C ) order parameter extracted from the birefringence data agrees with that in the visible region quite well. Further, the temperature gradients of the terahertz optical constants of E7 are also determined. The optical constants of E7 in the terahertz or sub-millimeter wave range are found to deviate significantly from values predicated by the usual extended Cauchy equations used in the visible and near-infrared.

© 2010 Optical Society of America

OCIS Codes
(000.6850) General : Thermodynamics
(120.4530) Instrumentation, measurement, and metrology : Optical constants
(140.7090) Lasers and laser optics : Ultrafast lasers
(160.1190) Materials : Anisotropic optical materials
(160.3710) Materials : Liquid crystals
(040.2235) Detectors : Far infrared or terahertz

ToC Category:
Ultrafast Optics

History
Original Manuscript: June 18, 2010
Revised Manuscript: July 1, 2010
Manuscript Accepted: July 5, 2010
Published: August 23, 2010

Citation
Chan-Shan Yang, Chia-Jen Lin, Ru-Pin Pan, Christopher T. Que, Kohji Yamamoto, Masahiko Tani, and Ci-Ling Pan, "The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range," J. Opt. Soc. Am. B 27, 1866-1873 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-9-1866


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S.-T. Wu and D.-K. Yang, Fundamentals of Liquid Crystal Devices, Wiley Series in Display Technology (Wiley, 2006).
  2. B. Bahadur, Liquid Crystals—Applications and Uses (World Scientific, 1992). [CrossRef]
  3. J. Li, C.-H. Wen, S. Gauza, R. Lu, and S.-T. Wu, “Refractive indices of liquid crystals for display applications,” J. Disp. Technol. 1, 51–61 (2005). [CrossRef]
  4. J. Li, S.-T. Wu, S. Brugioni, R. Meucci, and S. Faetti, “Infrared refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501 (2005). [CrossRef]
  5. S.-T. Wu, “Birefringence dispersions of liquid crystal,” Phys. Rev. A 33, 1270–1274 (1986). [CrossRef] [PubMed]
  6. S. Brugioni and R. Meucci, “Liquid crystals in the mid-infrared region and their applications,” Infrared Phys. Technol. 46, 17–21 (2004). [CrossRef]
  7. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nature Mater. 1, 26–33 (2002). [CrossRef]
  8. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007). [CrossRef]
  9. Y.J.Ding, Q.Hu, M.Kock, and C.E.Stutz, eds., “Special issue on THz materials, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 257–259 (2008). [CrossRef]
  10. X.-C.Zhang, R.Beigang, and K.Tanaka, eds., “Special issue on THz wave photonics,” J. Opt. Soc. Am. B 25, A1–A125 (2009).
  11. P. F. Goldsmith, “Quasi-optical techniques,” Proc. IEEE 80, 1729–1747 (1992). [CrossRef]
  12. R. Kersting, G. Strasser, and K. Unterrainer, “Terahertz phase modulator,” Electron. Lett. 36, 1156–1158 (2000). [CrossRef]
  13. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3, 148–151 (2009). [CrossRef]
  14. C.-Y. Chen, C.-F. Hsieh, Y.-F. Lin, R.-P. Pan, and C.-L. Pan, “Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter,” Opt. Express 12, 2625–2630 (2004). [CrossRef] [PubMed]
  15. C.-Y. Chen, C.-L. Pan, C.-F. Hsieh, Y.-F. Lin, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Lyot filter,” Appl. Phys. Lett. 88, 101107 (2006). [CrossRef]
  16. I.-C. Ho, C.-L. Pan, C.-F. Hsieh, and R.-P. Pan, “Liquid-crystal-based terahertz tunable Solc filter,” Opt. Lett. 33, 1401–1403 (2008). [CrossRef] [PubMed]
  17. C.-L. Pan, C.-F. Hsieh, R.-P. Pan, M. Tanaka, F. Miyamaru, M. Tani, and M. Hangyo, “Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal,” Opt. Express 13, 3921–3930 (2005). [CrossRef] [PubMed]
  18. S. A. Jewell, E. Hendry, T. H. Issac, and J. R. Sambles, “Tuneable Fabry–Perot etalon for terahertz radiation,” New J. Phys. 10, 033012 (2008). [CrossRef]
  19. C.-F. Hsieh, Y.-C. Lai, R.-P. Pan, and C.-L. Pan, “Polarizing terahertz waves with nematic liquid crystals,” Opt. Lett. 33, 1174–1176 (2008). [CrossRef] [PubMed]
  20. C.-J. Lin, Y.-T. Li, C.-F. Hsieh, R.-P. Pan, and C.-L. Pan, “Manipulating terahertz wave by a magnetically tunable liquid crystal phase grating,” Opt. Express 16, 2995–3001 (2008). [CrossRef] [PubMed]
  21. R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17, 7377–7382 (2009). [CrossRef] [PubMed]
  22. S.-T. Wu and K.-C. Lim, “Absorption and scattering measurements of nematic liquid crystals,” Appl. Opt. 26, 1722–1727 (1987). [CrossRef] [PubMed]
  23. R.-P. Pan, C.-F. Hsieh, C.-L. Pan, and C.-Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103, 093523 (2008). [CrossRef]
  24. J. Li, S. Gauza, and S.-T. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19–24 (2004). [CrossRef]
  25. J. Li, S. Gauzia, and S.-T. Wu, “High temperature-gradient refractive index liquid crystal,” Opt. Express 12, 2002–2010 (2004). [CrossRef] [PubMed]
  26. N. Vieweg, C. Jansen, M. K. Shakfa, M. Scheller, N. Krumbholz, R. Wilk, M. Mikulics, and M. Koch, “Molecular properties of liquid crystals in the terahertz frequency range,” Opt. Express 18, 6097–6107 (2010). [CrossRef] [PubMed]
  27. G. Abbate, V. Tkachenko, A. Marino, F. Vita, M. Giocondo, A. Mazzulla, and L. De Stefano, “Optical characterization of liquid crystals by combined ellipsometry and half-leaky-guided-mode spectroscopy in the visible-near infrared range,” J. Appl. Phys. 101, 073105 (2007). [CrossRef]
  28. F. Z. Yang and J. R. Sambles, “Determination of the microwave permittivities of nematic liquid crystals using a single-metallic slit technique,” Appl. Phys. Lett. 81, 2047–2049 (2002). [CrossRef]
  29. F. Z. Yang and J. R. Sambles, “Determination of the permittivity of nematic liquid crystals in the microwave region,” Liq. Cryst. 30, 599–602 (2003). [CrossRef]
  30. F. Z. Yang and J. R. Sambles, “Microwave liquid crystal wavelength selector,” Appl. Phys. Lett. 79, 3717–3719 (2001). [CrossRef]
  31. T. S. Perova, “Far-infrared and low-frequency Raman spectra of condensed media,” in Advances in Chemical Physics: Relaxation Phenomena in Condensed Matter, W.Coffey, eds. (Wiley, 1994), Vol. 87, pp. 427–480.
  32. G. J. Evans and M. Evans, “High and low frequency torsional absorptions in nematic K21,” J. Chem. Soc., Faraday Trans. 2 73, 285–292 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited