OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 9 — Sep. 1, 2010
  • pp: 1874–1877

On the characteristic lengths in the variable stripe length method for optical gain measurements

L. Cerdán, A. Costela, and I. García-Moreno  »View Author Affiliations


JOSA B, Vol. 27, Issue 9, pp. 1874-1877 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001874


View Full Text Article

Enhanced HTML    Acrobat PDF (183 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Although the variable stripe length (VSL) method has been widely used to measure the optical gain in thin film active media, different nor totally rigorous criteria have yet been used to estimate two important characterization parameters, namely, threshold and saturation lengths, on which the method critically depends. Here we present a formalism which leads to analytical expressions to rigorously calculate these characteristic lengths from VSL data, providing a unique criterion for the estimation of the amplified spontaneous emission threshold and saturation points.

© 2010 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(140.3380) Lasers and laser optics : Laser materials
(310.6860) Thin films : Thin films, optical properties
(310.6805) Thin films : Theory and design

ToC Category:
Thin Films

History
Original Manuscript: May 3, 2010
Revised Manuscript: July 14, 2010
Manuscript Accepted: July 15, 2010
Published: August 23, 2010

Citation
L. Cerdán, A. Costela, and I. García-Moreno, "On the characteristic lengths in the variable stripe length method for optical gain measurements," J. Opt. Soc. Am. B 27, 1874-1877 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-9-1874


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Costela, O. García, L. Cerdán, I. García-Moreno, and R. Sastre, “Amplified spontaneous emission and optical gain measurements from pyrromethene 567–doped polymer waveguides and quasi-waveguides,” Opt. Express 16, 7023–7036 (2008). [CrossRef] [PubMed]
  2. A. Costela, O. García, L. Cerdán, I. García-Moreno, and R. Sastre, “Amplified spontaneous emission and optical gain measurements from pyrromethene 567–doped polymer waveguides and quasi-waveguides: erratum,” Opt. Express 16, 7587–7587 (2008). [CrossRef]
  3. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, and F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440–444 (2000). [CrossRef] [PubMed]
  4. J. Mickevičius, G. Tamulaitis, M. S. Shur, Q. Fareed, J. P. Zhang, and R. Gaska, “Saturated gain in GaN epilayers studied by variable stripe length technique,” J. Appl. Phys. 99, 103513 (2006). [CrossRef]
  5. M. Vehse, J. Meinertz, O. Lange, P. Michler, J. Gutowski, S. Bader, A. Lell, and V. Härle, “Analysis of gain saturation behavior in GaN based quantum well lasers,” Phys. Status Solidi C 0, 43–47 (2002). [CrossRef]
  6. J. Valenta, I. Pelant, and J. Linnros, “Waveguiding effects in the measurement of optical gain in a layer of Si nanocrystals,” Appl. Phys. Lett. 81, 1396–1398 (2002). [CrossRef]
  7. L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, and L. Pavesi, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements,” Opt. Commun. 229, 337–348 (2004). [CrossRef]
  8. C. Lange, M. Schwalm, S. Chatterjee, W. W. Rühle, N. C. Gerhardt, S. R. Johnson, J.-B. Wang, and Y.-H. Zhang, “The variable stripe-length method revisited: Improved analysis,” Appl. Phys. Lett. 91, 191107 (2007). [CrossRef]
  9. M. D. McGehee, R. Gupta, S. Veenstra, E. K. Miller, M. A. Díaz-García, and A. J. Heeger, “Amplified spontaneous emission from photopumped films of a conjugated polymer,” Phys. Rev. B 58, 7035–7039 (1998). [CrossRef]
  10. K. Yamashita, T. Kuro, K. Oe, and H. Yanagi, “Low threshold amplified spontaneous emission from near-infrared dye-doped polymeric waveguide,” Appl. Phys. Lett. 88, 241110 (2006). [CrossRef]
  11. H. Azuma, T. Kobayashi, Y. Shim, N. Mamedov, and H. Naito, “Amplified spontaneous emission in α-phase and α-phase polyfluorene waveguides,” Org. Electron. 8, 184–188 (2007). [CrossRef]
  12. W. HolzerA. Penzkofer, T. Schmitt, A. Hartmann, C. Bader, H. Tillmann, D. Raabe, R. Stockmann, and H.-H. Hörnhold, “Amplified spontaneous emission in neat films of arylene-vinylene polymers,” Opt. Quantum Electron. 33, 121–150 (2001). [CrossRef]
  13. F. Lahoz, C. J. Oton, N. Capuj, M. Ferrer-González, S. Cheylan, and D. Navarro-Urrios, “Reduction of the amplified spontaneous emission threshold in semiconducting polymer waveguides on porous silica,” Opt. Express 17, 16766–16775 (2009). [CrossRef] [PubMed]
  14. L. Cerdán, A. Costela, I. García-Moreno, O. García, and R. Sastre, “Waveguides and quasi-waveguides based on pyrromethene 597-doped poly(methyl methacrylate),” Appl. Phys. B 97, 73–83 (2009). [CrossRef]
  15. T. Kobayashi, M. Flämmich, G. Jordan, R. D’Arcy, M. Rüther, W. J. Blau, Y. Suzuki, and T. Kaino, “Blue-green small-signal gain and saturation in a luminescent polymer gain medium,” Appl. Phys. Lett. 89, 131119 (2006). [CrossRef]
  16. Equation is implicit in IASE(L) and, hence, it cannot be fitted to an IASE(L) versus L plot as is done with Eq. . Fortunately Eq. is explicit in L and, consequently, g, Ω, and s=1/Is can be calculated by means of a least squares fit of Eq. to a L versus IASE(L) plot. When saturation is not evident (low pump intensity or short L) and the data dispersion is significant, the fit may render negative values of s (and so incorrect g and Ω values). In that case s=1/Is is fixed to zero, which is equivalent to saying that there is no gain saturation. Alternatively, Eq. can be fitted to the usual IASE(L) versus L plot. These two last fits will lead to slightly different g and Ω values since the former minimizes the sum of squared residuals in L, while the last minimizes the ones in IASE(L). Nevertheless, both fits are statistically significant.
  17. G. I. Peters and L. Allen, “Amplified spontaneous emission I. The threshold condition,” J. Phys. A 4, 238–243 (1971). [CrossRef]
  18. L. Cerdán, A. Costela, I. García-Moreno, O. García, R. Sastre, M. Calle, D. Muñoz, and J. de Abajo, “High-gain long-lived amplified spontaneous emission from dye-doped fluorinated polyimide planar waveguides,” Macromol. Chem. Phys. 210, 1624–1631 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited