OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 1 — Jan. 1, 2011
  • pp: 10–17

Two-dimensional atom localization via controlled spontaneous emission from a driven tripod system

Ren-Gang Wan, Jun Kou, Li Jiang, Yun Jiang, and Jin-Yue Gao  »View Author Affiliations


JOSA B, Vol. 28, Issue 1, pp. 10-17 (2011)
http://dx.doi.org/10.1364/JOSAB.28.000010


View Full Text Article

Enhanced HTML    Acrobat PDF (954 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A scheme for two-dimensional (2D) subwavelength atom localization is proposed, in which the atom is in a four-level tripod configuration and driven by two orthogonal standing-wave lasers. Because of the spatial dependence of atom–field interaction, the spontaneously emitted photon carries information about the position of the atom in standing-wave fields. We exploit this fact to 2D atom localization conditioned on the measurement of spontaneously emitted photon at a particular frequency, and obtain a high precision and resolution in the position probability distribution. Moreover, an improvement by a factor of 2 in the detecting probability of an atom can be achieved by initially preparing the atom in the coherent population trapping state. Qualitatively, the high- precision, high-resolution atom localization can be attributed to the quantum interference effect between competitive multiple spontaneous decay channels.

© 2011 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(270.1670) Quantum optics : Coherent optical effects

ToC Category:
Quantum Optics

History
Original Manuscript: August 26, 2010
Revised Manuscript: October 5, 2010
Manuscript Accepted: October 29, 2010
Published: December 6, 2010

Citation
Ren-Gang Wan, Jun Kou, Li Jiang, Yun Jiang, and Jin-Yue Gao, "Two-dimensional atom localization via controlled spontaneous emission from a driven tripod system," J. Opt. Soc. Am. B 28, 10-17 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-1-10


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. D. Phillips, “Nobel lecture: laser cooling and trapping of neutral atoms,” Rev. Mod. Phys. 70, 721-741 (1998). [CrossRef]
  2. G. P. Collins, “Experimenters produce new Bose-Einstein condensate(s) and possible puzzles for theorists,” Phys. Today 49, 18-21 (1996). [CrossRef]
  3. K. S. Johnson, J. H. Thywissen, W. H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, and M. Prentiss, “Localization of metastable atom beams with optical standing waves: nanolithography at the Heisenberg limit,” Science 280, 1583-1586 (1998). [CrossRef] [PubMed]
  4. K. T. Kapale, S. Qamar, and M. S. Zubairy, “Spectroscopic measurement of an atomic wave function,” Phys. Rev. A 67, 023805 (2003). [CrossRef]
  5. P. Storey and M. Collett, “Atom-position resolution by quadrature-field measurement,” Phys. Rev. A 47, 405-418 (1993). [CrossRef] [PubMed]
  6. A. M. Herkommer, H. J. Carmichael, and W. P. Schleich, “Localization of an atom by homodyne measurement,” Quantum Semiclass. Opt. 8, 189-203 (1996). [CrossRef]
  7. F. L. Kienm, G. Rempe, W. P. Schleich, and M. S. Zubairy, “Atom localization via Ramsey interferometry: a coherent cavity field provides a better resolution,” Phys. Rev. A 56, 2972-2977 (1997). [CrossRef]
  8. S. Kunze, G. Rempe, and M. Wilkens, “Atomic-position measurement via internal-state encoding,” Europhys. Lett. 27, 115-121(1994). [CrossRef]
  9. R. Quadt, M. Collett, and D. F. Walls, “Measurement of atomic motion in a standing light field by homodyne detection,” Phys. Rev. Lett. 74, 351-354 (1995). [CrossRef] [PubMed]
  10. S. Kunze, K. Dieckmann, and G. Rempe, “Diffraction of atoms from a measurement induced grating,” Phys. Rev. Lett. 78, 2038-2041 (1997). [CrossRef]
  11. S. Qamar, S. Y. Zhu, and M. S. Zubairy, “Precision localization of single atom using Autler-Townes microscopy,” Opt. Commun. 176, 409-416 (2000). [CrossRef]
  12. S. Qamar, S. Y. Zhu, and M. S. Zubairy, “Atom localization via resonance fluorescence,” Phys. Rev. A 61, 063806 (2000). [CrossRef]
  13. F. Ghafoor, S. Qamar, and M. S. Zubairy, “Atom localization via phase and amplitude control of the driving field,” Phys. Rev. A 65, 043819 (2002). [CrossRef]
  14. W. B. Shen, X. M. Hu, and J. Xu, “Sub-half-wavelength atom localization via coherence-controlled resonance fluorescence,” Phys. Rev. A 76, 013830 (2007). [CrossRef]
  15. M. Sahrai, H. Tajalli, K. T. Kapale, and M. S. Zubairy, “Subwavelength atom localization via amplitude and phase control of the absorption spectrum,” Phys. Rev. A 72, 013820(2005). [CrossRef]
  16. K. T. Kapale and M. S. Zubairy, “Subwavelength atom localization via amplitude and phase control of the absorption spectrum II,” Phys. Rev. A 73, 023813 (2006). [CrossRef]
  17. E. Paspalakis and P. L. Knight, “Localizing an atom via quantum interference,” Phys. Rev. A 63, 065802 (2001). [CrossRef]
  18. G. S. Agarwal and K. T. Kapale, “Subwavelength atom localization via coherent population trapping,” J. Phys. B 39, 3437-3446(2006). [CrossRef]
  19. D. C. Cheng, Y. P. Niu, R. X. Li, and S. Q. Gong, “Controllable atom localization via double-dark resonances in a tripod system,” J. Opt. Soc. Am. B 23, 2180-2184 (2006). [CrossRef]
  20. J. Xu and X. M. Hu, “Sub-half-wavelength atom localization via phase control of a pair of bichromatic fields,” Phys. Rev. A 76, 013830 (2007). [CrossRef]
  21. L. L. Jin, H. Sun, Y. P. Niu, and S. Q. Gong, “Sub-half-wavelength atom localization via two standing-wave fields,” J. Phys. B 41, 085508 (2008). [CrossRef]
  22. S. Qamar, A. Mehmood, and S. Qamar, “Subwavelength atom localization via coherent manipulation of the Raman gain process,” Phys. Rev. A 79, 033848 (2009). [CrossRef]
  23. J. Evers, S. Qamar, and M. S. Zubairy, “Atom localization and center-of-mass wave-function determination via multiple simultaneous quadrature measurements,” Phys. Rev. A 75, 053809(2007). [CrossRef]
  24. V. Ivanov and Y. Rozhdestvensky, “Two-dimensional atom localization in a four-level tripod system in laser fields,” Phys. Rev. A 81, 033809 (2010). [CrossRef]
  25. D. J. Gauthier, Y. Zhu, and T. W. Mossberg, “Observation of linewidth narrowing due to coherent stabilization of quantum fluctuations,” Phys. Rev. Lett. 66, 2460-2463 (1991). [CrossRef] [PubMed]
  26. S. Y. Zhu, L. M. Narducci, and M. O. Scully, “Quantum-mechanical interference effects in the spontaneous-emission spectrum of a driven atom,” Phys. Rev. A 52, 4791-4802 (1995). [CrossRef] [PubMed]
  27. J. H. Wu, A. J. Li, Y. Ding, Y. C. Zhao, and J. Y. Gao, “Control of spontaneous emission from a coherently driven four-level atom,” Phys. Rev. A 72, 023802 (2005). [CrossRef]
  28. J. H. Li, J. B. Liu, A. X. Chen, and C. C. Qi, “Spontaneous emission spectra and simulating multiple spontaneous generation coherence in a five-level atomic medium,” Phys. Rev. A 74, 033816 (2006). [CrossRef]
  29. A. J. Li, X. L. Song, X. G. Wei, L. Wang, and J. Y. Gao, “Effects of spontaneously generated coherence in a microwave-driven four-level atomic system,” Phys. Rev. A 77, 053806 (2008). [CrossRef]
  30. N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32, 4535 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited