OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 1 — Jan. 1, 2011
  • pp: 109–114

Surface-induced nonlinearity enhancement of TM modes in planar subwavelength waveguides

D. V. Skryabin, A. V. Gorbach, and A. Marini  »View Author Affiliations

JOSA B, Vol. 28, Issue 1, pp. 109-114 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (320 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using an asymptotic expansion of Maxwell equations and boundary conditions, we derive an amplitude equation for nonlinear TM modes in planar metal and dielectric waveguides. Our approach reveals that the physics of the significant enhancement of the nonlinear response in subwavelength waveguides with respect to their weakly guiding counterparts is hidden in surface effects. The corresponding enhancement factor is determined by the products of the surface discontinuities of the transverse field components and of the surface values of the longitudinal components of the electric field summed over all the interfaces. We present an insightful expression for the enhancement factor induced by the surface plasmon polaritons and discuss numerical and analytical results for the subwavelength dielectric and metal slot waveguides. Our theory also includes diffraction effects along the unbound direction in these waveguides.

© 2011 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.4310) Integrated optics : Nonlinear
(190.4350) Nonlinear optics : Nonlinear optics at surfaces
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Nonlinear Optics

Original Manuscript: August 20, 2010
Manuscript Accepted: October 31, 2010
Published: December 17, 2010

D. V. Skryabin, A. V. Gorbach, and A. Marini, "Surface-induced nonlinearity enhancement of TM modes in planar subwavelength waveguides," J. Opt. Soc. Am. B 28, 109-114 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguides,” Nat. Photon. 3, 216–219 (2009). [CrossRef]
  2. A. Di Falco, L. O’Faolain, and T. F. Krauss, “Dispersion control and slow light in slotted photonic crystal waveguides,” Appl. Phys. Lett. 92, 083501 (2008). [CrossRef]
  3. D. Mihalache, G. I. Stegeman, C. T. Seaton, E. M. Wright, R. Zanoni, A. D. Boardman, and T. Twardowski, “Exact dispersion relations for transverse magnetic polarized guided waves at a nonlinear interface,” Opt. Lett. 12, 187–189 (1987). [CrossRef] [PubMed]
  4. E. Feigenbaum and M. Orenstein, “Plasmon-soliton,” Opt. Lett. 32, 674–676 (2007). [CrossRef] [PubMed]
  5. A. R. Davoyan, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear plasmonic slot waveguides,” Opt. Express 16, 21209–21214(2008). [CrossRef] [PubMed]
  6. G. A. Wurtz and A. V. Zayats, “Nonlinear surface plasmon polaritonic crystals,” Laser Photon. Rev. 2, 125–135 (2008). [CrossRef]
  7. A. R. Davoyan, I. V. Shadrivov, and Y. S. Kivshar, “Self-focusing and spatial plasmon-polariton solitons,” Opt. Express 17, 21732–21737 (2009). [CrossRef] [PubMed]
  8. A. V. Gorbach and D. V. Skryabin, “Spatial solitons in periodic nanostructures,” Phys. Rev. A 79, 053812 (2009). [CrossRef]
  9. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58 (2009). [CrossRef]
  10. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003). [CrossRef] [PubMed]
  11. G. S. Wiederhecker, C. M. B. Cordeiro, F. Couny, F. Benabid, S. A. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nat. Photon. 1, 115–118 (2007). [CrossRef]
  12. S. Afshar V., W. Q. Zhang, H. Ebendorff-Heidepriem, and T. M. Monro, “Small core optical waveguides are more nonlinear than expected: experimental confirmation,” Opt. Lett. 34, 3577–3579 (2009). [CrossRef] [PubMed]
  13. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  14. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004). [CrossRef] [PubMed]
  15. A. Marini and D. V. Skryabin, “Ginzburg–Landau equation bound to the metal–dielectric interface and transverse nonlinear optics with amplified plasmon polaritons,” Phys. Rev. A 81, 033850(2010). [CrossRef]
  16. C. Koos, L. Jacome, C. Poulton, J. Leuthold, and W. Freude, “Nonlinear silicon-on-insulator waveguides for all-optical signal processing,” Opt. Express 15, 5976–5990 (2007). [CrossRef] [PubMed]
  17. S. Afshar V. and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17, 2298–2318 (2009). [CrossRef] [PubMed]
  18. R. M. J. Osgood, N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. Hsieh, E. Dulkeith, W. M. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon. 1, 162–235 (2009). [CrossRef]
  19. B. A. Daniel and G. P. Agrawal, “Vectorial nonlinear propagation in silicon nanowire waveguides: polarization effects,” J. Opt. Soc. Am. B 27, 956–965 (2010). [CrossRef]
  20. G. D. Valle and S. Longhi, “Geometric potential for plasmon polaritons on curved surfaces,” J. Phys. B 43, 051002 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited