OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 1 — Jan. 1, 2011
  • pp: 128–133

Miniaturization of step mirrors in a static Fourier transform spectrometer: theory and simulation

Cong Feng, Bo Wang, Zhongzhu Liang, and Jingqiu Liang  »View Author Affiliations

JOSA B, Vol. 28, Issue 1, pp. 128-133 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (827 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The diffraction at mirror facets restricts the size of step mirrors for static step-mirror-based Fourier transform spectrometers. This paper discusses the miniaturization of these step mirrors and proposes a quasiperiodic approximation of Fresnel diffraction to analyze the diffraction effect. Noise caused by diffraction is classified into approximation noise and edge noise. The edge-enlarge method is developed to reduce edge noise. This method can reduce mirror facet width to less than 30 times the longest wavelength to be studied. Simulation results are given.

© 2011 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(300.6190) Spectroscopy : Spectrometers
(300.6300) Spectroscopy : Spectroscopy, Fourier transforms

ToC Category:

Original Manuscript: June 22, 2010
Revised Manuscript: October 5, 2010
Manuscript Accepted: November 3, 2010
Published: December 20, 2010

Cong Feng, Bo Wang, Zhongzhu Liang, and Jingqiu Liang, "Miniaturization of step mirrors in a static Fourier transform spectrometer: theory and simulation," J. Opt. Soc. Am. B 28, 128-133 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. H. Kong, D. D. L. Wijngaards, and R. F. Wolffenbuttel, “Infrared micro-spectrometer based on a diffraction grating,” Sens. Actuators A, Phys. 92, 88–95 (2001). [CrossRef]
  2. P.-P. Jiang, Y.-Q. Qiu, Z.-H. Fu, D.-Z. Yang, and Y.-H. Shen, “DSP and FPGA-based multi-channel fiber-optic spectrometer,” Opt. Precision Eng. 14, 944–948 (2006).
  3. G. Lammel, S. Schweizer, and P. Renaud, “Microspectrometer based on a tunable optical filter of porous silicon,” Sens. Actuators A, Phys. 92, 52–59 (2001). [CrossRef]
  4. J. Sin, W. H. Lee, and D. Popa, “Assembled Fourier transform micro-spectrometer,” Proc. SPIE 6109, 610904(2006). [CrossRef]
  5. K. Yu, D. Lee, U. Krishnamoorthy, N. Park, and O. Solgaard, “Micromachined Fourier transform spectrometer on silicon optical bench platform,” Sens. Actuators A, Phys. 130–131, 523–530 (2006). [CrossRef]
  6. U. Wallrabe, C. Solf, J. Mohr, and J. G. Korvink, “Miniaturized Fourier transform spectrometer for the near infrared wavelength regime incorporating an electromagnetic linear actuator,” Sens. Actuators A, Phys. 123–124, 459–467 (2005). [CrossRef]
  7. B. B. C. Kyotoku, L. Chen, and M. Lipson, “Sub-nm resolution cavity enhanced microspectrometer,” Opt. Express 18, 102–107(2010). [CrossRef] [PubMed]
  8. J. Linkemann, F. Romero-Borja, and H. O. Tittel, “FT spectrometer with fixed mirrors using Fizeau fringes,” Proc. SPIE 1575, 184–187 (1992). [CrossRef]
  9. K. D. Moller, “Miniaturized wavefront-dividing interferometers without moving parts for field and space applications,” Proc. SPIE 1992, 130–139 (1993). [CrossRef]
  10. K. D. Moller, “Wave-front-dividing array interferometers without moving parts for real-time spectroscopy from the IR to the UV,” Appl. Opt. 34, 1493–1501 (1995). [CrossRef] [PubMed]
  11. J. Genest, P. Tremblay, and A. Villemaire, “Throughput of tilted interferometers,” Appl. Opt. 37, 4819–4822 (1998). [CrossRef]
  12. A. Rosak and F. Tintó, “Progress report of a static Fourier transform spectrometer breadboard,” in Proceedings of the 5th International Conference on Space Optics (ESA Publications Division, 2004), pp. 67–71.
  13. F. Brachet, P.-J. Hébert, E. Cansot, C. Buil, A. Lacan, L. Roucayrol, E. Courau, F. Bernard, C. Casteras, J. Loesel, and C. Pierangelo, “Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate,” Proc. SPIE 7100, 710019(2008). [CrossRef]
  14. C. Pierangelo, P. Hébert, C. Camy-Peyret, C. Clerbaux, P. Coheur, T. Phulpin, L. Lavanant, T. Tremas, P. Henry, and A. Rosak, “SIFTI: a Static Infrared Fourier Transform Interferometer dedicated to ozone and CO pollution monitoring,” presented at the International TOVS Study Conference-16, Angra dos Reis, Brazil, 2008), post session B13.
  15. A. Lacan, F.-M. Bréon, A. Rosak, F. Brachet, L. Roucayrol, P. Etcheto, C. Casteras, and Y. Salaün, “A static Fourier transform spectrometer for atmospheric sounding: concept and experimental implementation,” Opt. Express 18, 8311–8331(2010). [CrossRef] [PubMed]
  16. E. V. Ivanov, “Static Fourier transform spectroscopy with enhanced resolving power,” J. Opt. A Pure Appl. Opt. 2, 519(2000). [CrossRef]
  17. Y.-M. Kong, J.-Q. Liang, Z.-Z. Liang, B. Wang, and J. Zhang, “Micro assembled Fourier transform spectrometer,” Proc. SPIE 7283, 728304 (2009). [CrossRef]
  18. B. Wang, Z.-Z. Liang, Y.-M. Kong, J.-Q. Liang, J.-G. Fu, Z. Ying, W.-B. Zhu, J.-G. Lv, W.-B. Wang, P. Shu, and Z. Jun, “Design and fabrication of micro multi-mirrors based on silicon for micro-spectrometer,” Acta Phys. Sin. 59, 907–912(2010).
  19. G. Chengshan, L. Chuantao, H. Zhengping, and L. Tingting, “Suitability of different sampling methods for digital simulations of the optical diffraction,” Acta Opt. Sin. 28, 442–446(2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited