OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 1 — Jan. 1, 2011
  • pp: 37–44

Zero-velocity solitons in high-index photonic crystal fibers

Jesper Lægsgaard  »View Author Affiliations

JOSA B, Vol. 28, Issue 1, pp. 37-44 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (535 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nonlinear propagation in slow-light states of high-index photonic crystal fibers (PCFs) is studied numerically. To avoid divergencies in dispersion and nonlinear parameters around the zero-velocity mode, a time-propagating generalized nonlinear Schrödinger equation is formulated. Calculated slow-light modes in a solid core chalcogenide PCF are used to parameterize the model, which is shown to support standing and moving spatial solitons. Inclusion of Raman scattering slows down moving solitons exponentially, so that the zero-velocity soliton becomes an attractor state. An analytical expression for the deceleration rate that compares favorably with the numerical results is derived. Collisions of successive solitons due to the Raman deceleration are studied numerically, and it is found that the soliton interaction is mostly repulsive, as expected from the established theory of fiber solitons.

© 2011 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.5650) Nonlinear optics : Raman effect
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: August 24, 2010
Revised Manuscript: November 2, 2010
Manuscript Accepted: November 3, 2010
Published: December 10, 2010

Jesper Lægsgaard, "Zero-velocity solitons in high-index photonic crystal fibers," J. Opt. Soc. Am. B 28, 37-44 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Baba, “Slow light in photonic crystals,” Nat. Photon. 2, 465–473 (2008). [CrossRef]
  2. M. Ibanescu, S. G. Johnson, D. Roundy, C. Luo, Y. Fink, and J. D. Joannopoulos, “Anomalous dispersion relations by symmetry breaking in axially uniform waveguides,” Phys. Rev. Lett. 92, 063903 (2004). [CrossRef] [PubMed]
  3. A. F. Oskooi, J. D. Joannopoulos, and S. G. Johnson, “Zero-group-velocity modes in chalcogenide holey photonic-crystal fibers,” Opt. Express 17, 10082–10090 (2009). [CrossRef] [PubMed]
  4. Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’Guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18, 9107–9112 (2010). [CrossRef] [PubMed]
  5. J. Grgić, S. Xiao, J. Mørk, A.-P. Jauho, and N. A. Mortensen, “Slow-light enhanced absorption in a hollow-core fiber,” Opt. Express 18, 14270–14279 (2010). [CrossRef] [PubMed]
  6. M. Kolesik, E. M. Wright, and J. V. Moloney, “Simulation of femtosecond pulse propagation in sub-micron diameter tapered fibers,” Appl. Phys. B 79, 293–300 (2004). [CrossRef]
  7. S. Afshar V. and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17, 2298–2318(2009). [CrossRef] [PubMed]
  8. M. D. Turner, T. M. Monro, and S. Afshar V., “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part II: stimulated Raman scattering,” Opt. Express 17, 11565–11581 (2009). [CrossRef] [PubMed]
  9. A. Ferrando, M. Zacares, P. de Cordoba, D. Binosi, and A. Montero, “Forward-backward equations for nonlinear propagation in axially invariant optical systems,” Phys. Rev. E 71, 016601 (2005). [CrossRef]
  10. Y. Mizuta, M. Nagasawa, M. Ohtani, and M. Yamashita, “Nonlinear propagation analysis of few-optical-cycle pulses for subfemtosecond compression and carrier envelope phase effect,” Phys. Rev. A 72, 063802 (2005). [CrossRef]
  11. J. Lægsgaard, “Mode profile dispersion in the generalised nonlinear Schro¨dinger equation,” Opt. Express 15, 16110–16123(2007). [CrossRef] [PubMed]
  12. M. Kolesik and J. V. Moloney, “Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations,” Phys. Rev. E 70, 036604 (2004). [CrossRef]
  13. M. Soljačić, E. Lidorikis, M. Ibanescu, S. Johnson, J. Joannopoulos, and Y. Fink, “Optical bistability and cutoff solitons in photonic bandgap fibers,” Opt. Express 12, 1518–1527(2004). [CrossRef] [PubMed]
  14. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
  15. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989). [CrossRef]
  16. J. Lægsgaard, N. A. Mortensen, and A. Bjarklev, “Mode areas and field energy distribution in honeycomb photonic bandgap fibers,” J. Opt. Soc. Am. B 20, 2037–2045 (2003). [CrossRef]
  17. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef] [PubMed]
  18. J. Lægsgaard, A. Bjarklev, and S. E. B. Libori, “Chromatic dispersion in photonic crystal fibers: fast and accurate scheme for calculation,” J. Opt. Soc. Am. B 20, 443–448(2003). [CrossRef]
  19. N. A. Mortensen and M. D. Nielsen, “Modeling of realistic cladding structures for air-core photonic bandgap fibers,” Opt. Lett. 29, 349–351 (2004). [CrossRef] [PubMed]
  20. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in Fortran 77 (Cambridge University, 2001).
  21. A. Tuniz, G. Brawley, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 16, 18524–18534(2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited