OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 10 — Oct. 1, 2011
  • pp: 2332–2336

Temperature-insensitive and intensity-modulated embedded photonic-crystal-fiber modal-interferometer-based microdisplacement sensor

Bo Dong and Emily Jianzhong Hao  »View Author Affiliations

JOSA B, Vol. 28, Issue 10, pp. 2332-2336 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (605 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and demonstrate a temperature-insensitive and intensity-modulated embedded photonic-crystal-fiber (PCF) modal-interferometer-based microdisplacement sensor. The embedded PCF sensor has the structure of single-mode-fiber (SMF)–PCF–SMF, with a core offset at one splice joint. With the structure embedded in a cured carbon-fiber-composite-laminate-based simple-supported beam, the applied microdisplacement can be measured by monitoring its extinction ratio variation, while the extinction ratio variation is independent of the temperature variation and bending-induced strain. The sensitivity reaches 0.0024 dB / μm , the measurement resolution reaches 42 μm , and the dynamic measurement range is within the range of 0 200 Hz .

© 2011 Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2370) Fiber optics and optical communications : Fiber optics sensors

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 25, 2011
Revised Manuscript: July 26, 2011
Manuscript Accepted: July 30, 2011
Published: September 1, 2011

Bo Dong and Emily Jianzhong Hao, "Temperature-insensitive and intensity-modulated embedded photonic-crystal-fiber modal-interferometer-based microdisplacement sensor," J. Opt. Soc. Am. B 28, 2332-2336 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Prelle, F. Lamarque, and P. Revel, “Reflective optical sensor for long-range and high-resolution displacements,” Sens. Actuators A 127, 139–146 (2006). [CrossRef]
  2. A. Khiat, F. Lamarque, C. Prelle, P. Pouille, M. Leester-Schädel, and S. Büttgenbach, “Two-dimension fiber optic sensor for high-resolution and long-range linear measurements,” Sens. Actuators A 158, 43–50 (2010). [CrossRef]
  3. L. Perret, L. Chassagne, S. Topcu, P. Ruaux, B. Cagneau, and Y. Alayli, “Fiber optics sensor for sub-nanometric displacement and wide bandwidth systems,” Sens. Actuators A 165, 189–193(2011). [CrossRef]
  4. T. Wang, S. Zheng, and Z. Yang, “High precision displacement sensor using a low-finesse fiber-optic Fabry-Perot interferometer,” Sens. Actuators A 69, 134–138 (1998). [CrossRef]
  5. D. T. Smith, J. R. Pratt, and L. P. Howard, “A fiber-optic interferometer with subpicosecond resolution for dc and low-frequency displacement measurement,” Rev. Sci. Instrum. 80, 035105–035108 (2009). [CrossRef] [PubMed]
  6. L. M. Manojlovic, “A simple white-light fiber-optic interferometric sensing system for absolute position measurement,” Opt. Lasers Eng. 48, 486–490 (2010). [CrossRef]
  7. X. Y. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, “Novel temperature-insensitive displacement sensor using a fiber Bragg grating,” Smart Mat. Struct. 14, 7–10 (2005). [CrossRef]
  8. J. M. Baptista, S. F. Santos, G. Rego, O. Frazao, and J. L. Santos, “Micro-displacement or bending measurement using a long-period fibre grating in a self-referenced fibre optic intensity sensor,” Opt. Commun. 260, 8–11 (2006). [CrossRef]
  9. D. Bo, Z. Qida, L. Feng, G. Tuan, X. Lifang, L. Shuhong, and G. Hong, “Liquid-level sensor with a high-birefringence-fiber loop mirror,” Appl. Opt. 45, 7767–7771 (2006). [CrossRef] [PubMed]
  10. O. Frazão, J. Santos, F. Araújo, and L. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2, 449–459(2008). [CrossRef]
  11. J. Villatoro, V. Finazzi, V. P. Minkovich, V. Pruneri, and G. Badenes, “Temperature-insensitive photonic crystal fiber interferometer for absolute strain sensing,” Appl. Phys. Lett. 91, 091109 (2007). [CrossRef]
  12. D-H. Kim and J. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Express 12, 4490–4495 (2004). [CrossRef] [PubMed]
  13. C. L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demonkan, “Temperature insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16, 2535–2537 (2004). [CrossRef]
  14. X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113(2007). [CrossRef]
  15. Z. Tian, S. S.-H. Yam, and H.-P. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photon. Technol. Lett. 20, 1387–1389 (2008). [CrossRef]
  16. B. Dong, D.-P. Zhou, and L. Wei, “Temperature insensitive all-fiber compact polarization-maintaining photonic crystal fiber based interferometer and its applications in fiber sensors,” J. Lightwave Technol. 28, 1011–1015 (2010). [CrossRef]
  17. B. Dong, J. Hao, C.-Y. Liaw, B. Lin, and S. C. Tjin, “Simultaneous strain and temperature measurement using a compact photonic crystal fiber inter-modal interferometer and a fiber Bragg grating,” Appl. Opt. 49, 6232–6235 (2010). [CrossRef] [PubMed]
  18. B. Dong, D.-P. Zhou, L. Wei, W.-K. Liu, and J. W. Y. Lit, “Temperature- and phase-independent lateral force sensor based on a core-offset multi-mode fiber interferometer,” Opt. Express 16, 19291–19296 (2008). [CrossRef]
  19. J. Hannah and M. J. Hillier, Applied Mechanics, 3rd ed.(Longmans, 1995), pp. 310–312.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited