OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 10 — Oct. 1, 2011
  • pp: 2362–2368

Electromagnetic tunneling of obliquely incident waves through a single-negative slab paired with a double-positive uniaxial slab

Giuseppe Castaldi, Vincenzo Galdi, Andrea Alù, and Nader Engheta  »View Author Affiliations


JOSA B, Vol. 28, Issue 10, pp. 2362-2368 (2011)
http://dx.doi.org/10.1364/JOSAB.28.002362


View Full Text Article

Enhanced HTML    Acrobat PDF (486 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that, under appropriate oblique-incidence and polarization conditions, the inherent opaqueness of a homogeneous, isotropic single-negative slab may be perfectly compensated (in the ideal lossless case) by a homogeneous, anisotropic (uniaxial) double-positive slab, so that complete tunneling (with total transmission and zero phase delay) occurs. We present an analytical and numerical study aimed at deriving the basic design rules, elucidating the underlying physical mechanisms, and exploring the role of the various involved parameters.

© 2011 Optical Society of America

OCIS Codes
(240.7040) Optics at surfaces : Tunneling
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 17, 2011
Manuscript Accepted: July 24, 2011
Published: September 6, 2011

Citation
Giuseppe Castaldi, Vincenzo Galdi, Andrea Alù, and Nader Engheta, "Electromagnetic tunneling of obliquely incident waves through a single-negative slab paired with a double-positive uniaxial slab," J. Opt. Soc. Am. B 28, 2362-2368 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-10-2362


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Fredkin and A. Ron, “Effective left-handed (negative index) composite material,” Appl. Phys. Lett. 81, 1753–1755(2002). [CrossRef]
  2. A. Lakhtakia and C. M. Krowne, “Restricted equivalence of paired epsilon-negative and mu-negative layers to a negative phase-velocity material (alias left-handed material),” Optik 114, 305–307 (2003). [CrossRef]
  3. A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2571 (2003). [CrossRef]
  4. J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. 15, 6345–6364 (2003). [CrossRef]
  5. H. Jiang, H. Chen, H. Li, Y. Zhang, J. Zi, and S. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E 69, 066607 (2004). [CrossRef]
  6. L.-G. Wang, H. Chen, and S.-Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B 70, 245102 (2004). [CrossRef]
  7. L. Zhou, W. Wen, C. T. Chan, and P. Sheng, “Electromagnetic-wave tunneling through negative-permittivity media with high magnetic fields,” Phys. Rev. Lett. 94, 243905 (2005). [CrossRef]
  8. B. Hou, H. Wen, Y. Leng, and W. Wen, “Electromagnetic wave transmission through subwavelength metallic meshes sandwiched between split rings,” Appl. Phys. Lett. 87, 201114 (2005). [CrossRef]
  9. G. Guan, H. Jiang, H. Li, Y. Zhang, H. Chen, and S. Zhu, “Tunneling modes of photonic heterostructures consisting of single-negative materials,” Appl. Phys. Lett. 88, 211112 (2006). [CrossRef]
  10. L. Zhang, Y. Zhang, L. He, H. Li, and H. Chen, “Experimental study of photonic crystals consisting of ε-negative and μ-negative materials,” Phys. Rev. E 74, 056615(2006). [CrossRef]
  11. X. Zhou and G. Hu, “Total transmission condition for photon tunnelling in a layered structure with metamaterials,” J. Opt. A 9, 60–65 (2007). [CrossRef]
  12. Y. Chen, “Defect modes merging in one-dimensional photonic crystals with multiple single-negative material defects,” Appl. Phys. Lett. 92, 011925 (2008). [CrossRef]
  13. K.-Y. Kim and B. Lee, “Complete tunneling of light through impedance-mismatched barrier layers,” Phys. Rev. A 77, 023822(2008). [CrossRef]
  14. Y. Fang and S. He, “Transparent structure consisting of metamaterial layers and matching layers,” Phys. Rev. A 78, 023813(2008). [CrossRef]
  15. T. Feng, Y. Li, H. Jiang, Y. Sun, L. He, H. Li, Y. Zhang, Y. Shi, and H. Chen, “Electromagnetic tunneling in a sandwich structure containing single negative media,” Phys. Rev. E 79, 026601(2009). [CrossRef]
  16. H. Oraizi and A. Abdolali, “Mathematical formulation for zero reflection from multilayer metamaterial structures and their notable applications,” IET Microw. Antennas Propag. 3, 987–996 (2009). [CrossRef]
  17. Y. Ding, Y. Li, H. Jiang, and H. Chen, “Electromagnetic tunneling in nonconjugated epsilon-negative and mu-negative metamaterial pair,” PIERS Online 6, 109–112 (2010). [CrossRef]
  18. C. A. M. Butler, I. R. Hooper, A. P. Hibbins, J. R. Sambles, and P. A. Hobson, “Metamaterial tunnel barrier gives broadband microwave transmission,” J. Appl. Phys. 109, 013104 (2011). [CrossRef]
  19. G. Castaldi, I. Gallina, V. Galdi, A. Alù, and N. Engheta, “Transformation-optics generalization of tunnelling effects in bi-layers made of paired pseudo-epsilon-negative/mu-negative media,” J. Opt. 13, 024011 (2011). [CrossRef]
  20. G. Castaldi, I. Gallina, V. Galdi, A. Alù, and N. Engheta, “Electromagnetic tunneling through a single-negative slab paired with a double-positive bilayer,” Phys. Rev. B 83, 081105 (2011). [CrossRef]
  21. E. Cojocaru, “Electromagnetic tunneling in lossless trilayer stacks containing single-negative metamaterials,” Prog. Electromagn. Res. 113, 227–249 (2011). [CrossRef]
  22. V. Lomakin and E. Michielssen, “Enhanced transmission through metallic plates perforated by arrays of subwavelength holes and sandwiched between dielectric slabs,” Phys. Rev. B 71, 235117 (2005). [CrossRef]
  23. It can be verified that the reflection-coefficient denominator is always nonzero.
  24. R. Marqués, J. Martel, F. Mesa, and F. Medina, “Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides,” Phys. Rev. Lett. 89, 183901 (2002). [CrossRef] [PubMed]
  25. J. Esteban, C. Camacho-Peñalosa, J. E. Page, T. M. Martín-Guerrero, and E. Márquez-Segura, “Simulation of negative permittivity and negative permeability by means of evanescent waveguide modes—theory and experiment,” IEEE Trans. Microw. Theory Tech. 53, 1506–1514 (2005). [CrossRef]
  26. P. A. Belov, R. Marqués, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B 67, 113103 (2003). [CrossRef]
  27. A. Sihvola, Electromagnetic Mixing Formulas and Applications (IEE Publishing, 1999). [CrossRef]
  28. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410(2007). [CrossRef]
  29. Note that the transmittance peak in the angular response of the stand-alone ENG slab for near-grazing incidence (see inset in Fig. ) is attributable to a pseudo-Brewster condition.
  30. I. R. Hooper, T. W. Preist, and J. R. Sambles, “Making tunnel barriers (including metals) transparent,” Phys. Rev. Lett. 97, 053902 (2006). [CrossRef] [PubMed]
  31. L. Jelinek, J. D. Baena, J. Voves, and R. Marques, “Metamaterial-inspired perfect tunneling in semiconductor heterostructures,” New J. Phys 13, 083011 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited