OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 10 — Oct. 1, 2011
  • pp: 2383–2389

Polarization-dependent spectral broadening of femtosecond pulses in silicon waveguides

Chethiya M. Dissanayake, Ivan D. Rukhlenko, Malin Premaratne, and Govind P. Agrawal  »View Author Affiliations


JOSA B, Vol. 28, Issue 10, pp. 2383-2389 (2011)
http://dx.doi.org/10.1364/JOSAB.28.002383


View Full Text Article

Enhanced HTML    Acrobat PDF (390 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the polarization dependence of the spectral broadening of femtosecond pulses inside silicon waveguides by using finite-difference time-domain (FDTD) simulations. Our FDTD model includes the anisotropic dependency of predominant nonlinear effects in silicon: Kerr effect, two-photon absorption, and Raman effect. In addition, free-carrier absorption and free-carrier dispersion effects are incorporated into the model. The anisotropic nature of the silicon nonlinearities leads to the polarization-dependent spectral broadening of optical pulses inside silicon waveguides. Our study unambiguously shows that the spectral broadening inside silicon waveguides can be enhanced by carefully selecting the polarization angle of the input optical pulse. Numerical calculations reveal nearly a 4.5-times increase in spectral broadening (inside a 0.1 mm long silicon waveguide) when the polarization angle of the input pulse is adjusted accordingly. The combined impact of silicon nonlinearities and output polarizer on spectral broadening is investigated for different input polarization angles. Finally we show numerically that, for a given waveguide length and input peak intensity, there is an optimum pulse width that corresponds to the maximum spectral broadening.

© 2011 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.4330) Materials : Nonlinear optical materials
(300.6170) Spectroscopy : Spectra
(050.1755) Diffraction and gratings : Computational electromagnetic methods

ToC Category:
Spectroscopy

History
Original Manuscript: June 7, 2011
Revised Manuscript: July 29, 2011
Manuscript Accepted: July 30, 2011
Published: September 6, 2011

Citation
Chethiya M. Dissanayake, Ivan D. Rukhlenko, Malin Premaratne, and Govind P. Agrawal, "Polarization-dependent spectral broadening of femtosecond pulses in silicon waveguides," J. Opt. Soc. Am. B 28, 2383-2389 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-10-2383


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000). [CrossRef]
  2. N. Savage, “Linking with light (high-speed optical interconnects),” IEEE Spectrum 39, 32–36 (2002). [CrossRef]
  3. B. Jalali, “Can silicon change photonics?” Phys. Status Solidi A 205, 213–224 (2008). [CrossRef]
  4. U. Hilleringmann and K. Goser, “Optoelectronic system integration on silicon: waveguides, photodetectors, and VLSI CMOS circuits on one chip,” IEEE Trans. Electron Devices 42, 841–846 (1995). [CrossRef]
  5. R. A. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 1678–1687 (2006). [CrossRef]
  6. G. T. Reed and A. P. Knight, Silicon Photonics: an Introduction (Wiley, 2004). [CrossRef]
  7. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815–5875 (2001). [CrossRef]
  8. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).
  9. R. A. Soref and J. P. Lorenzo, “Single-crystal silicon: a new material for 1.3 and 1.6 μm integrated-optical components,” Electron. Lett. 21, 953–954 (1985). [CrossRef]
  10. R. A. Soref and J. P. Lorenzo, “All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm,” IEEE J. Quantum Electron. 22, 873–879 (1986). [CrossRef]
  11. R. A. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987). [CrossRef]
  12. P. D. Trinh, S. Yegnanarayanan, and B. Jalali, “Integrated optical directional couplers in silicon-on-insulator,” Electron. Lett. 31, 2097–2098 (1995). [CrossRef]
  13. B. Jalali, S. Yegnanarayanan, T. Yoon, T. Yoshimoto, I. Rendina, and F. Coppinger, “Advances in silicon-on-insulator optoelectronics,” IEEE J. Sel. Top. Quantum Electron. 4, 938–947 (1998). [CrossRef]
  14. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006). [CrossRef]
  15. H. Iwai and S. Ohmi, “Silicon integrated circuit technology from past to future,” Microelectron. Reliability 42, 465–491 (2002). [CrossRef]
  16. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007). [CrossRef] [PubMed]
  17. R. M. Osgood Jr., N. C. Panoiu, J. I. Dadap, X. Liu, X. Chen, I. Hsieh, E. Dulkeith, W. M. J. Green, and Y. A. Vlasov, “Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires,” Adv. Opt. Photon. 1, 162–235 (2009). [CrossRef]
  18. J. Leuthold, C. Koos, and W. Freude, “Nonlinear silicon photonics,” Nat. Photon. 4, 535–544 (2010). [CrossRef]
  19. R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, and B. Jalali, “Observation of stimulated Raman amplification in silicon waveguides,” Opt. Express 11, 1731–1739 (2003). [CrossRef] [PubMed]
  20. X. Chen, N. C. Panoiu, and R. M. Osgood Jr., “Theory of Raman-mediated pulsed amplification in silicon-wire waveguides,” IEEE J. Quantum Electron. 42, 160–170 (2006). [CrossRef]
  21. J. Y. Lee, L. Yin, G. P. Agrawal, and P. M. Fauchet, “Ultrafast optical switching based on nonlinear polarization rotation in silicon waveguides,” Opt. Express 18, 11514–11523 (2010). [CrossRef] [PubMed]
  22. L. Yin, J. Zhang, P. M. Fauchet, and G. P. Agrawal, “Optical switching using nonlinear polarization rotation inside silicon waveguides,” Opt. Lett. 34, 476–478 (2009). [CrossRef] [PubMed]
  23. I. D. Rukhlenko, I. L. Garanovich, M. Premaratne, A. A. Sukhorukov, G. P. Agrawal, and Yu. S. Kivshar, “Polarization rotation in silicon waveguides: analytical modeling and applications,” IEEE Photon. J. 2, 423–435 (2010). [CrossRef]
  24. B. A. Daniel and G. P. Agrawal, “Vectorial nonlinear propagation in silicon nanowire waveguides: polarization effects,” J. Opt. Soc. Am. B 27, 956–965 (2010). [CrossRef]
  25. C. M. Dissanayake, M. Premaratne, I. D. Rukhlenko, and G. P. Agrawal, “FDTD modeling of anisotropic nonlinear optical phenomena in silicon waveguides,” Opt. Express 18, 21427–21448 (2010). [CrossRef] [PubMed]
  26. Ö. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, “All optical switching and continuum generation in silicon waveguides,” Opt. Express 12, 4094–4102 (2004). [CrossRef] [PubMed]
  27. I.-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C.-Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, and R. M. Osgood, “Supercontinuum generation in silicon photonic wires,” Opt. Express 15, 15242–15249 (2007). [CrossRef] [PubMed]
  28. L. Yin, Q. Lin, and G. P. Agrawal, “Soliton fission and supercontinuum generation in silicon waveguides,” Opt. Lett. 32, 391–393 (2007). [CrossRef] [PubMed]
  29. A. Liu, L. Liao, Y. Chetrit, J. Basak, H. Nguyen, D. Rubin, and M. Paniccia, “Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform,” IEEE J. Sel. Top. Quantum Electron. 16, 23–32 (2010). [CrossRef]
  30. W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt. 9, 47–74 (2004). [CrossRef] [PubMed]
  31. P. E. Murphy, J. Fleig, G. Forbes, and M. Tricard, “High precision metrology of domes and aspheric optics,” Proc. SPIE 5786, 112–121 (2005). [CrossRef]
  32. L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32, 2031–2033 (2007). [CrossRef] [PubMed]
  33. Y. Liu, C. W. Chow, H. K. Tsang, and S. P. Wong, “Enhancement of self phase modulation induced spectral broadening in silicon waveguides by ion implantation,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CThQ2. [PubMed]
  34. G. W. Rieger, K. S. Virk, and J. F. Young, “Nonlinear propagation of ultrafast 1.5 μm pulses in high-index-constrast silicon-on-insulator waveguides,” Appl. Phys. Lett. 84, 900–902(2004). [CrossRef]
  35. Ö. Boyraz, T. Indukuri, and B. Jalali, “Self phase modulation induced spectral broadening in silicon waveguides,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CThJ2. [PubMed]
  36. Ö. Boyraz, T. Indukuri, and B. Jalali, “Self-phase-modulation induced spectral broadening in silicon waveguides,” Opt. Express 12, 829–834 (2004). [CrossRef] [PubMed]
  37. I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Nonlinear silicon photonics: analytical tools,” IEEE J. Sel. Top. Quantum Electron. 16, 200–215 (2010). [CrossRef]
  38. I. D. Rukhlenko, M. Premaratne, C. M. Dissanayake, and G. P. Agrawal, “Nonlinear pulse evolution in silicon waveguides: an approximate analytic approach,” J. Lightwave Technol. 27, 3241–3248 (2009). [CrossRef]
  39. N. Suzuki, “FDTD analysis of two-photon absorption and free-carrier absorption in Si high-contrast waveguides,” J. Lightwave Technol. 25, 2495–2501 (2007). [CrossRef]
  40. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  41. B. Tatian, “Fitting refractive-index data with the Sellmeier dispersion formula,” Appl. Opt. 23, 4477–4485 (1984). [CrossRef] [PubMed]
  42. C. M. Dissanayake, I. D. Rukhlenko, M. Premaratne, and G. P. Agrawal, “Raman-mediated nonlinear interactions in silicon waveguides: copropagating and counterpropagating pulses,” IEEE Photon. Technol. Lett. 21, 1372–1374 (2009). [CrossRef]
  43. B. Jalali, V. Raghunathan, D. Dimitropoulos, and Ö. Boyraz, “Raman-based silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12, 412–421 (2006). [CrossRef]
  44. Y. Okawachi, M. A. Foster, J. E. Sharping, A. L. Gaeta, Q. Xu, and M. Lipson, “All-optical slow-light on a photonic chip,” Opt. Express 14, 2317–2322 (2006). [CrossRef] [PubMed]
  45. A. Liu, H. Rong, R. Jones, O. Cohen, D. Hak, and M. Paniccia, “Optical amplification and lasing by stimulated Raman scattering in silicon waveguides,” J. Lightwave Technol. 24, 1440–1455 (2006). [CrossRef]
  46. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  47. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). [CrossRef]
  48. R. M. Joseph and A. Taflove, “FDTD Maxwell’s equations models for nonlinear electrodynamics and optics,” IEEE Trans. Antennas Propag. 45, 364–374 (1997). [CrossRef]
  49. F. L. Teixeira, “Time-domain finite-difference and finite-element methods for Maxwell equations in complex media,” IEEE Trans. Antennas Propag. 56, 2150–2166 (2008). [CrossRef]
  50. J. Schneider and S. Hudson, “A finite-difference time-domain method applied to anisotropic material,” IEEE Trans. Antennas Propag. 41, 994–999 (1993). [CrossRef]
  51. H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80, 416–418 (2002). [CrossRef]
  52. S. Roy, S. K. Bhadra, and G. P. Agrawal, “Femtosecond pulse propagation in silicon waveguides: variational approach and its advantages,” Opt. Commun. 281, 5889–5893 (2008). [CrossRef]
  53. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited