OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 10 — Oct. 1, 2011
  • pp: 2390–2401

Dicke narrowing in the dispersion mode of detection and in noise-immune cavity-enhanced optical heterodyne molecular spectroscopy—theory and experimental verification

Junyang Wang, Patrick Ehlers, Isak Silander, and Ove Axner  »View Author Affiliations


JOSA B, Vol. 28, Issue 10, pp. 2390-2401 (2011)
http://dx.doi.org/10.1364/JOSAB.28.002390


View Full Text Article

Enhanced HTML    Acrobat PDF (976 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Dicke narrowing in both the absorption and dispersion modes of detection have been scrutinized by noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) using an isolated transition in the v 1 + v 3 + v 4 1 v 4 1 band of acetylene [ P e ( 33 ) at 6439.371 cm 1 ] at room temperature. The results represent the first (to our knowledge) demonstration of Dicke narrowing detected in dispersion, as well as by NICE-OHMS, and the paper provides thereby the first comparison of the Dicke narrowing phenomenon for the two modes of detection. It is shown that Dicke narrowing in dispersion can be described by the dispersive counterparts to the conventional Galatry and Rautian absorption line-shape functions, which are explicitly given. Spectroscopic parameters for the targeted transition were extracted in both absorption and dispersion and found to be in agreement with those previously reported for other lines and bands. The shortcomings of the Galatry model to provide physically relevant parameters in this pressure range are discussed.

© 2011 Optical Society of America

OCIS Codes
(020.3690) Atomic and molecular physics : Line shapes and shifts
(260.2030) Physical optics : Dispersion
(300.1030) Spectroscopy : Absorption
(300.6310) Spectroscopy : Spectroscopy, heterodyne
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:
Spectroscopy

History
Original Manuscript: May 31, 2011
Manuscript Accepted: July 21, 2011
Published: September 6, 2011

Citation
Junyang Wang, Patrick Ehlers, Isak Silander, and Ove Axner, "Dicke narrowing in the dispersion mode of detection and in noise-immune cavity-enhanced optical heterodyne molecular spectroscopy—theory and experimental verification," J. Opt. Soc. Am. B 28, 2390-2401 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-10-2390


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. H. Dicke, “The effect of collisions upon the Doppler width of spectral lines,” Phys. Rev. 89, 472–473 (1953). [CrossRef]
  2. J. R. Murray and A. Javan, “Effects of collisions on Raman line profiles of hydrogen and deuterium gas,” J. Mol. Spectrosc. 42, 1–26 (1972). [CrossRef]
  3. D. R. A. McMahon, “Dicke narrowing reduction of the Doppler contribution to a linewidth,” Aust. J. Phys. 34, 639–675 (1981).
  4. G. C. Corey and F. R. McCourt, “Dicke narrowing and collisional broadening of spectral-lines in dilute molecular gases,” J. Chem. Phys. 81, 2318–2329 (1984). [CrossRef]
  5. R. P. Frueholz and C. H. Volk, “Analysis of Dicke narrowing in wall-coated and buffer-gas-filled atomic storage-cells,” J. Phys. B 18, 4055–4067 (1985). [CrossRef]
  6. D. R. Rao and T. Oka, “Dicke narrowing and pressure broadening in the infrared fundamental-band of HCl perturbed by Ar,” J. Mol. Spectrosc. 122, 16–27 (1987). [CrossRef]
  7. A. Henry, D. Hurtmans, M. Margottin-Maclou, and A. Valentin, “Confinement narrowing and absorber speed dependent broadening effects on CO lines in the fundamental band perturbed by Xe, Ar, Ne, He and N2,” J. Quant. Spectrosc. Radiat. Transfer 56, 647–671 (1996). [CrossRef]
  8. G. Dufour, D. Hurtmans, A. Henry, A. Valentin, and M. Lepère, “Line profile study from diode laser spectroscopy in the CH1242v3 band perturbed by N2, O2, Ar, and He,” J. Mol. Spectrosc. 221, 80–92 (2003). [CrossRef]
  9. J. T. Hodges, D. Lisak, N. Lavrentieva, A. Bykov, L. Sinitsa, J. Tennyson, R. J. Barber, and R. N. Tolchenov, “Comparison between theoretical calculations and high-resolution measurements of pressure broadening for near-infrared water spectra,” J. Mol. Spectrosc. 249, 86–94 (2008). [CrossRef]
  10. G. Casa, R. Wehr, A. Castrillo, E. Fasci, and L. Gianfrani, “The line shape problem in the near-infrared spectrum of self-colliding CO2 molecules: experimental investigation and test of semiclassical models,” J. Chem. Phys. 130, 184306 (2009). [CrossRef] [PubMed]
  11. L. Fissiaux, M. Dhyne, and M. Lepère, “Diode-laser spectroscopy: Pressure dependence of N2-broadening coefficients of lines in the ν4+ν5 band of C2H2,” J. Mol. Spectrosc. 254, 10–15 (2009). [CrossRef]
  12. M. Dhyne, L. Fissiaux, J. C. Populaire, and M. Lepére, “Temperature dependence of the N2-broadening coefficients of acetylene,” J. Quant. Spectrosc. Radiat. Transfer 110, 358–366 (2009). [CrossRef]
  13. M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepére, “Collisional broadening and shift coefficients of lines in the ν4+ν5 band of C122H2 diluted in N2 from low to room temperatures,” J. Quant. Spectrosc. Radiat. Transfer 111, 973–989 (2010). [CrossRef]
  14. M. Dhyne, P. Joubert, J. C. Populaire, and M. Lepère, “Self-collisional broadening and shift coefficients of lines in the ν4+ν5 band of C122H2 from 173.2 to 298.2 K by diode-laser spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer 112, 969–979(2011). [CrossRef]
  15. B. Martin and M. Lepère, “N2-broadening coefficients in the ν4 band of CH124 at room temperature,” J. Mol. Spectrosc. 250, 70–74 (2008). [CrossRef]
  16. B. Martin and M. Lepére, “O2- and air-broadening coefficients in the ν4 band of CH124 at room temperature,” J. Mol. Spectrosc. 255, 6–12 (2009). [CrossRef]
  17. B. Martin and M. Lepère, “Temperature dependence of N2- and O2-broadening coefficients in the ν4 band of CH134,” J. Mol. Spectrosc. 259, 46–55 (2010). [CrossRef]
  18. L. Galatry, “Simultaneous effect of Doppler and foreign gas broadening on spectral lines,” Phys. Rev. 122, 1218–1223(1961). [CrossRef]
  19. M. Nelkin and A. Ghatak, “Simple binary collision model for van Hove’s Gs(r,t),” Phys. Rev. 135, A4–A9 (1964). [CrossRef]
  20. S. G. Rautian and I. I. Sobel’man, “Effect of collisions on Doppler broadening of spectral lines,” Sov. Phys. Usp. 9, 701–716 (1967). [CrossRef]
  21. P. L. Varghese and R. K. Hanson, “Collisional narrowing effects on spectral-line shapes measured at high-resolution,” Appl. Opt. 23, 2376–2385 (1984). [CrossRef] [PubMed]
  22. E. V. Podivilov and D. A. Shapiro, “Dicke narrowing in a plasma,” JETP Lett. 56, 449–454 (1992).
  23. R. Ciurylo, “Shapes of pressure- and Doppler-broadened spectral lines in the core and near wings,” Phys. Rev. A 58, 1029–1039 (1998). [CrossRef]
  24. D. A. Shapiro, R. Ciurylo, R. Jaworski, and A. D. May, “Modeling the spectral line shapes with speed-dependent broadening and Dicke narrowing,” Can. J. Phys. 79, 1209–1222 (2001). [CrossRef]
  25. D. A. Shapiro, R. Ciurylo, J. R. Drummond, and A. D. May, “Solving the line-shape problem with speed-dependent broadening and shifting and with Dicke narrowing. I. formalism,” Phys. Rev. A 65, 012501 (2002). [CrossRef]
  26. R. Ciurylo, D. A. Shapiro, J. R. Drummond, and A. D. May, “Solving the line-shape problem with speed-dependent broadening and shifting and with Dicke narrowing. II. application,” Phys. Rev. A 65, 012502 (2002). [CrossRef]
  27. C. J. Borde, “On the theory of linear absorption line shapes in gases,” C.R. Physique 10, 866–882 (2009). [CrossRef]
  28. M. Lepère, “Line profile study with tunable diode laser spectrometers,” Spectrochim. Acta, Part A 60, 3249–3258 (2004). [CrossRef]
  29. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980). [CrossRef] [PubMed]
  30. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B 32, 145–152 (1983). [CrossRef]
  31. J. Ye, L. S. Ma, and J. L. Hall, “Sub-Doppler optical frequency reference at 1.064 μm by means of ultrasensitive cavity-enhanced frequency modulation spectroscopy of a C2HD overtone transition,” Opt. Lett. 21, 1000–1002 (1996). [CrossRef] [PubMed]
  32. J. Ye, L. S. Ma, and J. L. Hall, “Ultrastable optical frequency reference at 1.064 μm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178–182 (1997). [CrossRef]
  33. J. Ye, L. S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998). [CrossRef]
  34. L. S. Ma, J. Ye, P. Dube, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255–2268 (1999). [CrossRef]
  35. A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential,” Appl. Phys. B 92, 313–326 (2008). [CrossRef]
  36. A. Kaldor, A. G. Maki, and W. B. Olson, “Pollution monitor for nitric oxide—laser device based on Zeeman modulation of absorption,” Science 176, 508–510 (1972). [CrossRef] [PubMed]
  37. G. Litfin, C. R. Pollock, R. F. Curl, and F. K. Tittel, “Sensitivity enhancement of laser-absorption spectroscopy by magnetic rotation effect,” J. Chem. Phys. 72, 6602–6605 (1980). [CrossRef]
  38. T. A. Blake, C. Chackerian, and J. R. Podolske, “Prognosis for a mid-infrared magnetic rotation spectrometer for the in situ detection of atmospheric free radicals,” Appl. Opt. 35, 973–985 (1996). [CrossRef] [PubMed]
  39. H. Ganser, W. Urban, and A. M. Brown, “The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser,” Mol. Phys. 101, 545–550 (2003). [CrossRef]
  40. T. Fritsch, M. Horstjann, D. Halmer, Sabana, P. Hering, and M. Murtz, “Magnetic Faraday modulation spectroscopy of the 1-0 band of NO14 and NO15,” Appl. Phys. B 93, 713–723(2008). [CrossRef]
  41. R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 mu m by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. USA 106, 12587–12592(2009). [CrossRef] [PubMed]
  42. P. Kluczynski, S. Lundqvist, J. Westberg, and O. Axner, “Faraday rotation spectrometer with sub-second response time for detection of nitric oxide using a cw DFB quantum cascade laser at 5.33 μm,” Appl. Phys. B 103, 451–459 (2011). [CrossRef]
  43. E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, “Residual amplitude-modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2, 1320–1326 (1985). [CrossRef]
  44. A. Foltynowicz, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry,” PhD. thesis (Umeå University, 2009).
  45. F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range,” J. Opt. Soc. Am. B 24, 1392–1405 (2007). [CrossRef]
  46. F. M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, and O. Axner, “Doppler-broadened fiber-laser-based NICE-OHMS—improved detectability,” Opt. Express 15, 10822–10831 (2007). [CrossRef] [PubMed]
  47. A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signals from optically saturated transitions under low pressure conditions,” J. Opt. Soc. Am. B 25, 1156–1165 (2008). [CrossRef]
  48. A. Foltynowicz, W. Ma, and O. Axner, “Characterization of fiber-laser-based sub-Doppler NICE-OHMS for trace gas detection,” Opt. Express 16, 14689–14702 (2008). [CrossRef] [PubMed]
  49. A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Wavelength-modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signal line shapes in the Doppler limit,” J. Opt. Soc. Am. B 26, 1384–1394 (2009). [CrossRef]
  50. I. Silander, P. Ehlers, J. Wang, and O. Axner, Department of Physics, Umeå University, Umeå, Sweden, are preparing a manuscript to be called “Modeling frequency modulation background signals from fiber-based electro optic modulators based on crosstalk.”
  51. A. Foltynowicz, I. Silander, and O. Axner, Department of Physics, Umeå University, Umeå, Sweden, are preparing a manuscript to be called “Reduction of background signals from fiber-coupled electro-optic modulators in NICE-OHMS.”
  52. A. Foltynowicz, J. Y. Wang, P. Ehlers, and O. Axner, “Distributed-feedback-laser-based NICE-OHMS in the pressure-broadened regime,” Opt. Express 18, 18580–18591 (2010). [CrossRef] [PubMed]
  53. Note that the terms Voigt, Rautian, and Galatry profiles normally refer to absorption line shapes in the literature. In this paper, however, they refer to both absorption and dispersion line shapes, and these are therefore here referred to as Rautian/Galatry absorption/dispersion line shapes.
  54. H. Valipour and D. Zimmermann, “Investigation of J dependence of line shift, line broadening, and line narrowing coefficients in the ν1+3ν3 absorption band of acetylene,” J. Chem. Phys. 114, 3535–3545 (2001). [CrossRef]
  55. H. A. Kramers, “La diffusion de la lumiere par les atomes,” Atti. Congr. Int. Fis. Como. 2, 545–557 (1927).
  56. R. L. Kronig, “On the theory of dispersion of x-rays,” J. Opt. Soc. Am. 12, 547–556 (1926). [CrossRef]
  57. W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144–1155 (2008). [CrossRef]
  58. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983). [CrossRef]
  59. R. G. DeVoe and R. G. Brewer, “Laser frequency division and stabilization,” Phys. Rev. A 30, 2827–2829 (1984). [CrossRef]
  60. L. S. Rothman, I. E. Gordon, A. Barbe, D. C. Benner, P. E. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 110, 533–572 (2009). [CrossRef]
  61. J. Ye, “Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards,” PhD. thesis (University of Colorado, 1997).
  62. F. M. Schmidt, W. Ma, A. Foltynowicz, and O. Axner, “Highly sensitive dispersion spectroscopy by probing the free spectral range of an optical cavity using dual-frequency modulation,” Appl. Phys. B 101, 497–509 (2010). [CrossRef]
  63. S. W. Arteaga, C. M. Bejger, J. L. Gerecke, J. L. Hardwick, Z. T. Martin, J. Mayo, E. A. McIlhattan, J. M. F. Moreau, M. J. Pilkenton, M. J. Polston, B. T. Robertson, and E. N. Wolf, “Line broadening and shift coefficients of acetylene at 1550 nm,” J. Mol. Spectrosc. 243, 253–266 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited