OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 10 — Oct. 1, 2011
  • pp: 2418–2429

Analytical framework for dynamic light pulse atom interferometry at short interrogation times

Richard Stoner, David Butts, Joseph Kinast, and Brian Timmons  »View Author Affiliations


JOSA B, Vol. 28, Issue 10, pp. 2418-2429 (2011)
http://dx.doi.org/10.1364/JOSAB.28.002418


View Full Text Article

Enhanced HTML    Acrobat PDF (497 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-precision inertial sensing demonstrations with light pulse atom interferometry have typically used Raman pulses having durations orders of magnitude shorter than the dwell time between interferometer pulses. Environmentally robust sensors operating at high-bandwidth will be required to operate at short (millisecond scale) dwell times between Raman pulses. In such an operational mode, the Raman pulse duration becomes an appreciable fraction of the dwell time between pulses. In addition, high-precision inertial sensing applications have typically been demonstrated in mildly dynamic or nondynamic environments having low rate of change of inertial input, ensuring that applied Raman pulses satisfy the Raman resonance condition. Application of nonresonant pulses will be inevitable in sensors registering time-varying inertial input. We present a diagrammatic technique for calculation of atomic output state populations for multipulse atom optics manipulations that explicitly account for the effects of finite pulse duration and finite Raman detuning effects on the laser-induced atomic phase. We analyze several atom interferometer sequences. We report accelerometer and gyroscope phase evolution for fixed Raman laser frequency difference incorporating corrections in powers of the ratio of pulse duration to time interval between interferometer pulses. Our accelerometer result agrees with other published results.

© 2011 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(020.1335) Atomic and molecular physics : Atom optics

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: May 10, 2011
Revised Manuscript: August 5, 2011
Manuscript Accepted: August 5, 2011
Published: September 13, 2011

Citation
Richard Stoner, David Butts, Joseph Kinast, and Brian Timmons, "Analytical framework for dynamic light pulse atom interferometry at short interrogation times," J. Opt. Soc. Am. B 28, 2418-2429 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-10-2418


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett. 78, 2046–2049 (1997). [CrossRef]
  2. M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the Earth’s gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett. 81, 971–974 (1998). [CrossRef]
  3. T. L. Gustavson, A. Landragin, and M. A. Kasevich, “Rotation sensing with a dual atom interferometer Sagnac gyroscope,” Class. Quant. Gravity 17, 2385–2398 (2000). [CrossRef]
  4. A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia 38, 25–61(2001). [CrossRef]
  5. J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002). [CrossRef]
  6. D. S. Durfee, Y. K. Shaham, and M. A. Kasevich, “Long-term stability of an area-reversible atom-interferometer sagnac gyroscope,” Phys. Rev. Lett. 97, 240801 (2006). [CrossRef]
  7. H. Müller, A. Peters, and S. Chu, “A precision measurement of the gravitational redshift by the interference of matter waves,” Nature 463, 926–929 (2010). [CrossRef] [PubMed]
  8. T. Müller, M. Gilowski, M. Zaiser, P. Berg, C. Schubert, T. Wendrich, W. Ertmer, and E. M. Rasel, “A compact dual atom interferometer gyroscope based on laser-cooled rubidium,” Eur. Phys. J. D 53, 273–281 (2009). [CrossRef]
  9. Q. Bodart, S. Merlet, M. Malossi, F. Pereira Dos Santos, P. Bouyer, and A. Landragin, “A cold atom pyramidal gravimeter with a single laser beam,” Appl. Phys. Lett. 96, 134101 (2010). [CrossRef]
  10. D. L. Butts, J. M. Kinast, B. P. Timmons, and R. E. Stoner, “Light pulse atom interferometry at short interrogation times,” J. Opt. Soc. Am. B 28, 416–421 (2011). [CrossRef]
  11. K. Moler, D. S. Weiss, M. Kasevich, and S. Chu, “Theoretical analysis of velocity-selective Raman transitions,” Phys. Rev. A 45, 342–348 (1992). [CrossRef] [PubMed]
  12. D. S. Weiss, B. C. Young, and S. Chu, “Precision measurement of ℏ/mCs based on photon recoil using laser-cooled atoms and atomic interferometry,” Appl. Phys. B 59, 217–253 (1994). [CrossRef]
  13. B. Young, M. Kasevich, and S. Chu, “Precision atom interferometry with light pulses,” Atom Interferometry, P.Berman, ed. (Academic, 1997), pp. 363–406. [CrossRef]
  14. A. Peters, “High precision gravity measurements using atom interferometry,” Ph.D. thesis (Stanford University, 1998).
  15. P. Storey and C. Cohen-Tannoudji, “The Feynman path integral approach to atomic interferometry. A tutorial,” J. Phys. II (France) 4, 1999–2027 (1994). [CrossRef]
  16. D. A. Steck, “Quantum and atom optics,” http://steck.us/teaching (2006).
  17. J. K. Stockton, “Continuous quantum measurement of cold alkali-atom spins,” Ph.D. thesis (California Institute of Technology, 2007).
  18. G. Baym, Lectures on Quantum Mechanics (Benjamin/Cummings Publication, 1969).
  19. J. Vanier and C. Audoin, The Quantum Physics of Atomic Frequency Standards, Vol.  II (Adam Hilger, 1989). [CrossRef]
  20. E. L. Hahn, “Spin echoes,” Phys. Rev. 80, 580–594 (1950). [CrossRef]
  21. C. Antoine, “Matter wave beam splitters in gravito-inertial and trapping potentials: generalized ttt scheme for atom interferometry,” Appl. Phys. B 84, 585–597 (2006). [CrossRef]
  22. C. Antoine, “Rotating matter-wave beam splitters and consequences for atom gyrometers,” Phys. Rev. A 76, 033609 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited