OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 10 — Oct. 1, 2011
  • pp: 2436–2443

Enhancement of stimulated Raman scattering in terrace-microspheres

Hiyori Uehara, Tetsuo Kishi, Tetsuji Yano, and Shuichi Shibata  »View Author Affiliations


JOSA B, Vol. 28, Issue 10, pp. 2436-2443 (2011)
http://dx.doi.org/10.1364/JOSAB.28.002436


View Full Text Article

Enhanced HTML    Acrobat PDF (1699 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Terrace-microspheres of high-index glass ( BaO - SiO 2 - TiO 2 glass, n D = 1.93 ) containing 0.3 ppm of Nd 3 + were used to investigate the interaction between Raman scattering due to a glass matrix and fluorescence due to Nd 3 + . The terrace-microspheres were pumped with a tunable CW Ti:sapphire laser ( 790 nm 830 nm wavelength) for changing pumping wavelengths. With pumping in the 800 830 nm wavelength region, there was a spectral overlap between Raman scattering and Nd 3 + fluorescence. Under such conditions, Nd 3 + fluorescence works as a seeding and an amplifier of stimulated Raman scattering (SRS), resulting in SRS enhancement. With pumping of 20 mW power at around 830 nm wavelength, the terrace-microspheres showed the strongest SRS gain, 5–6 times of that of 790 nm wavelength pumping. SRS thresholds of the terrace-microspheres were improved from 3 mW ( 790 nm wavelength pumping) to 0.3 mW ( 830 nm pumping) due to the enhancement effect. The potential application for a multiwavelength Raman laser with a low threshold was demonstrated in the near-IR region ( λ = 840 940 nm ).

© 2011 Optical Society of America

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(190.5650) Nonlinear optics : Raman effect
(290.5910) Scattering : Scattering, stimulated Raman
(300.6450) Spectroscopy : Spectroscopy, Raman
(140.3945) Lasers and laser optics : Microcavities
(180.5655) Microscopy : Raman microscopy

ToC Category:
Scattering

History
Original Manuscript: February 24, 2011
Revised Manuscript: August 18, 2011
Manuscript Accepted: August 20, 2011
Published: September 16, 2011

Citation
Hiyori Uehara, Tetsuo Kishi, Tetsuji Yano, and Shuichi Shibata, "Enhancement of stimulated Raman scattering in terrace-microspheres," J. Opt. Soc. Am. B 28, 2436-2443 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-10-2436


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. H. Stolen, “Fiber Raman lasers,” Fiber Integr. Opt. 3, 21–52(1980). [CrossRef]
  2. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621–623 (2002). [CrossRef] [PubMed]
  3. T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004). [CrossRef] [PubMed]
  4. I. S. Grudinin and L. Maleki, “Efficient Raman laser based on a CaF2 resonator,” J. Opt. Soc. Am. B 25, 594–598(2008). [CrossRef]
  5. T. J. Kippenberg, S. M. Spillane, D. K. Armani, B. Min, L. Yang, and K. J. Vahala, “Fabrication, coupling and nonlinear optics of ultra-high-Q micro-sphere and chip-based toroid microcavities,” in Optical Microcavities, K.J.Vahala, ed. (World Scientific, 2004), pp. 177–238. [CrossRef]
  6. P. W. Barber and R. K. Chang, Optical Effects Associated with Small Particles (World Scientific, 1988).
  7. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996). [CrossRef] [PubMed]
  8. A. Serpenguzel, S. Arnold, and G. Griffel, “Excitation of resonances of microspheres on an optical fiber,” Opt. Lett. 20, 654–656 (1995). [CrossRef] [PubMed]
  9. J. G. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997). [CrossRef] [PubMed]
  10. S. Shibata, S. Ashida, H. Segawa, and T. Yano, “Coated microsphere as spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 40, 379–384 (2006). [CrossRef]
  11. S. Shibata, T. Yano, and H. Segawa, “Sol-gel-derived spheres for spherical microcavity,” Acc. Chem. Res. 40, 913–920 (2007). [CrossRef] [PubMed]
  12. S. Shibata, T. Yano, and H. Segawa, “Organic–inorganic hybrid materials for photonic applications,” IEEE J. Sel. Top. Quantum Electron. 14, 1361–1369 (2008). [CrossRef]
  13. H. Uehara, T. Yano, and S. Shibata, “Terrace formation with a picoliter sol-gel droplet for spherical cavity Raman laser,” J. Sol-Gel Sci. Technol. 58, 319–325 (2011). [CrossRef]
  14. H. Uehara, T. Yano, and S. Shibata, “Terrace-microsphere lasers: spherical cavity lasers for multi-wavelength emission,” Proc. SPIE 7598, 75981E (2010). [CrossRef]
  15. A. S. L. Gomes and N. M. Lawandy, “Efficient stimulated Raman scattering externally seeded by molecular spontaneous emission,” Opt. Lett. 19, 408–410 (1994). [CrossRef] [PubMed]
  16. A. F. Kwok and R. K. Chang, “Fluorescence seeding of weaker-gain Raman modes in microdroplets: enhancement of stimulated Raman scattering,” Opt. Lett. 17, 1262–1264 (1992). [CrossRef] [PubMed]
  17. J. Cheng, A. Y. S. Cheng, Y. He, H. Zuo, and J. Yang, “Enhancement of stimulated Raman scattering of CS2 by using fluorescence of R6G,” Opt. Commun. 246, 141–145 (2005). [CrossRef]
  18. M. Saito, T. Yano, H. Segawa, and S. Shibata, “Site-selective excitation and fluorescence of Nd3+ ion-doped glasses for lasing at 900 nm band,” presented at the 3rd International Conference on Science and Technology for Advanced Ceramics, Yokohama, Japan, June 16-18, 2009.
  19. B. O. Mysen and P. Richet, “The titanium anomalies,” in Silicate Glasses and Melts (Elsevier, 2005), pp. 357–386.
  20. C. Schultz-Münzenberg, “The quasi-static structure of oxide glasses, in Analysis of the Composition and Structure of Glass and Glass Ceramics, H.Bach and D.Krause, eds. (Springer, 1999), pp. 141–311.
  21. V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54, R1777(1996). [CrossRef] [PubMed]
  22. M. Domenecha and G. Lifante, “Continuous-wave laser operation at 1.3 μm in Nd3+-doped Zn:LiNbO3 channel waveguides,” Appl. Phys. Lett. 84, 3271–3273 (2004). [CrossRef]
  23. X. Pu and Z. Yang, “Enhancement of stimulated Raman scattering of weak-gain Raman modes in a pendant drop by dye-lasing gain,” J. Opt. Soc. Am. B 21, 343–348 (2004). [CrossRef]
  24. R. Symes, H. Meresman, R. M. Sayer, and J. P. Reid, “A quantitative demonstration of the enhancement of cavity enhanced Raman scattering by broad band external laser seeding,” Chem. Phys. Lett. 419, 545–549 (2006). [CrossRef]
  25. S. Wada, H. Moriwaki, A. Nakamura, and H. Tashiro, “Injection seeding for the enhancement of high-order anti-Stokes stimulated Raman scattering,” Opt. Lett. 20, 848–850(1995). [CrossRef] [PubMed]
  26. G. P. Agrawal, “Theory of Raman amplifiers,” in Raman Amplification in Fiber Optical Communication Systems, C.Headley and G.P.Agrawal, eds. (Elsevier, 2005), pp. 33–102.
  27. J. A. Dharmadhikari, A. K. Dharmadhikari, A. Mishra, and G. Ravindra Kumar, “Amplified spontaneous emission enhanced forward stimulated Raman scattering in dye solutions,” Appl. Phys. B 76, 755–759 (2003). [CrossRef]
  28. R. R. B. Correia, P. Alcantara, and S. L. S. Cunha, “Dye-induced spectral narrowing of stimulated scattering in CS2,” Chem. Phys. Lett. 313, 553–558 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited