OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 10 — Oct. 1, 2011
  • pp: 2448–2455

Origin and time dependence of higher-order nonlinearities in metal nanocomposites

J. Jayabalan  »View Author Affiliations


JOSA B, Vol. 28, Issue 10, pp. 2448-2455 (2011)
http://dx.doi.org/10.1364/JOSAB.28.002448


View Full Text Article

Enhanced HTML    Acrobat PDF (542 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The higher-order nonlinear optical response of a composite medium having metal nanoparticles is usually attributed to that originating from the third-order nonlinearity of the metal. In this article, the time dependence of hot-electron contribution to the third-, fifth-, and seventh-order nonlinear absorption coefficients of the composite medium has been studied. By comparing the results of the calculation with that of the experiments, it has been shown that the higher-order nonlinearities originating from the hot electrons of metal do contribute to the measured higher-order nonlinear absorption coefficients of the composite material.

© 2011 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.4870) Nonlinear optics : Photothermal effects
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 18, 2011
Revised Manuscript: August 23, 2011
Manuscript Accepted: August 24, 2011
Published: September 22, 2011

Citation
J. Jayabalan, "Origin and time dependence of higher-order nonlinearities in metal nanocomposites," J. Opt. Soc. Am. B 28, 2448-2455 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-10-2448


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Cheskis, S. Bar-Ad, R. Morandotti, J. S. Aitchison, H. S. Eisenberg, Y. Silberberg, and D. Ross, “Strong spatiotemporal localization in a silica nonlinear waveguide array,” Phys. Rev. Lett. 91, 223901 (2003). [CrossRef] [PubMed]
  2. M. Hawton and M. Dignam, “Infinite-order excitonic Bloch equations for asymmetric nanostructures,” Phys. Rev. Lett. 91, 267402 (2003). [CrossRef]
  3. Y. Yosia and S. Ping, “Double optical bistability and its application in nonlinear chalcogenide-fiber Bragg gratings,” Physica B 394, 293–296 (2007). [CrossRef]
  4. Yosia and P. Shum, “Optical bistability in periodic media with third-, fifth-, and seventh-order nonlinearities,” J. Lightwave Technol. 25, 875–882 (2007). [CrossRef]
  5. K. Dolgaleva, H. Shin, and R. W. Boyd, “Observation of a microscopic cascaded contribution to the fifth-order nonlinear susceptibility,” Phys. Rev. Lett. 103, 113902 (2009). [CrossRef] [PubMed]
  6. Y. Akiyama, K. Midorikawa, Y. Matsunawa, Y. Nagata, M. Obara, H. Tashiro, and K. Toyoda, “Generation of high-order harmonics using laser-produced rare-gas-like ions,” Phys. Rev. Lett. 69, 2176–2179 (1992). [CrossRef] [PubMed]
  7. D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10, 511–513 (1985). [CrossRef] [PubMed]
  8. N. D. Fatti and F. Vallee, “Ultrafast optical nonlinear properties of metal nanoparticles,” Appl. Phys. B. 73, 383–390 (2001). [CrossRef]
  9. G. S. Agarwal and S. D. Gupta, “T-matrix approach to the nonlinear susceptibilities of heterogeneous media,” Phys. Rev. A 38, 5678–5687 (1988). [CrossRef] [PubMed]
  10. N. C. Kothari, “Effective-medium theory of a nonlinear composite medium using the T-matrix approach: exact results for spherical grains,” Phys. Rev. A 41, 4486–4492 (1990). [CrossRef] [PubMed]
  11. X. Y. Liu and Z. Y. Li, “High order nonlinear susceptibilities of composite medium,” Solid State Commun. 96, 981–985 (1995). [CrossRef]
  12. E. L. Falcao-Filho, C. B. de Araujo, and J. J. Rodrigues, Jr., “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B 24, 2948–2956 (2007). [CrossRef]
  13. D. Rativa, R. E. de Araujo, and A. S. L. Gomes, “One photon nonresonant high-order nonlinear optical properties of silver nanoparticles in aqueous solution,” Opt. Express 16, 19244–19252 (2008). [CrossRef]
  14. C. Voisin, N. D. Fatti, D. Christofilos, and F. Vallée, “Ultrafast electron dynamics and optical nonlinearities in metal nanoparticles,” J. Phys. Chem. B 105, 2264–2280 (2001). [CrossRef]
  15. Y. Tang and M. Ouyang, “Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering,” Nat. Mater. 6, 754–759 (2007). [CrossRef] [PubMed]
  16. J. Jayabalan, A. Singh, R. Chari, S. Khan, H. Srivastava, and S. M. Oak, “Transient absorption and higher-order nonlinearities in silver nanoplatelets,” Appl. Phys. Lett. 94, 181902 (2009). [CrossRef]
  17. F. Vallee, Non-Equilibrium Dynamics of Semiconductors and Nanostructures (CRC Press, 2005), Chap. 5, pp. 101–142. [CrossRef]
  18. Y. Hamanaka, A. Nakamura, S. Omi, N. D. Fatti, F. Vallee, and C. Flytzanis, “Ultrafast response of nonlinear refractive index of silver nanocrystals embedded in glass,” Appl. Phys. Lett. 75, 1712–1714 (1999). [CrossRef]
  19. N. D. Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallee, “Non-equilibrium electron dynamics in noble metals,” Phys. Rev. B 61, 16956–16966 (2000). [CrossRef]
  20. M. Perner, S. Gresillon, J. Mrz, G. von Plessen, J. Feldmann, J. Porstendorfer, K.-J. Berg, and G. Berg, “Observation of hot-electron pressure in the vibration dynamics of metal nanoparticles,” Phys. Rev. Lett. 85, 792–795 (2000). [CrossRef] [PubMed]
  21. J. Y. Bigot, V. Halte, J. C. Merle, and A. Daunois, “Electron dynamics in metallic nanoparticles,” Chem. Phys. 251, 181–203(2000). [CrossRef]
  22. S. Giordano and W. Rocchia, “Shape-dependent effects of dielectrically nonlinear inclusions in heterogeneous media,” J. Appl. Phys. 98, 104101 (2005). [CrossRef]
  23. N. Okada, Y. Hamanaka, A. Nakamura, I. Pastoriza-Santos, and L. M. Liz-Marzan, “Linear and nonlinear optical response of silver nanoprisms: local electric fields of dipole and quadrupole plasmon resonances,” J. Phys. Chem. B 108, 8751–8755(2004). [CrossRef]
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  25. Y. Hamanaka, A. Nakamura, N. Hayashi, and S. Omi, “Dispersion curves of complex third-order optical susceptibilities around the surface plasmon resonance in Ag nanocrystal-glass composites,” J. Opt. Soc. Am. B 20, 1227–1232 (2003). [CrossRef]
  26. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley & Sons, 1983).
  27. L. Bonacina, A. Gallegari, C. Bonati, F. V. Mourik, and M. Chergui, “Time resolved photodynamics of triangular-shaped silver nanoplates,” Nano Lett. 6, 7–10 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited