OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 10 — Oct. 1, 2011
  • pp: 2456–2464

Indirect approach for the calculation of luminescence from optical structures driven out of thermal equilibrium

Jean-François Bisson and Ken-Ichi Ueda  »View Author Affiliations

JOSA B, Vol. 28, Issue 10, pp. 2456-2464 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (446 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



One can predict the thermal emission spectrum of any material from the knowledge of its absorbance and its temperature: this is the Kirchhoff–Planck law. We show that if McCumber’s relation holds and if the spatial distribution of the excited state is uniform, the Kirchhoff–Planck law can be generalized by introducing the chemical potential difference between the metastable and ground manifolds involved in the transition. The proposed formalism makes it possible to determine the emission spectra of an optical structure driven out of equilibrium solely from its transmission and reflection spectra and the level of excitation, considerably simplifying computations compared to a direct approach. An example is shown for a multilayer with embedded luminescent ions. Experimental emission spectra from Yb 3 + -doped Y 2 O 3 taken at and out of thermal equilibrium are found to be in qualitative agreement with the theory.

© 2011 Optical Society of America

OCIS Codes
(000.6850) General : Thermodynamics
(030.5620) Coherence and statistical optics : Radiative transfer
(160.2540) Materials : Fluorescent and luminescent materials
(260.3800) Physical optics : Luminescence
(270.5290) Quantum optics : Photon statistics
(300.0300) Spectroscopy : Spectroscopy

ToC Category:

Original Manuscript: May 17, 2011
Revised Manuscript: August 6, 2011
Manuscript Accepted: August 17, 2011
Published: September 22, 2011

Jean-François Bisson and Ken-Ichi Ueda, "Indirect approach for the calculation of luminescence from optical structures driven out of thermal equilibrium," J. Opt. Soc. Am. B 28, 2456-2464 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. F. Bisson, D. Kouznetsov, K. Ueda, S. Fredrich-Thornton, K. Petermann, and G. Huber, “Switching of emissivity and photo-conductivity in highly doped Yb3+:Y2O3 and Lu2O3 ceramics,” Appl. Phys. Lett. 90, 201901 (2007). [CrossRef]
  2. P. Würfel, “Light with nonzero chemical potential,” J. Phys. C 15, 3967–3985 (1982). [CrossRef]
  3. P. Pigeat, D. Rouxel, and B. Weber, “Calculation of thermal emissivity for thin films by a direct method,” Phys. Rev. B 57, 9293–9300 (1998). [CrossRef]
  4. C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos,” Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93, 213905 (2004). [CrossRef] [PubMed]
  5. S. Chandrasekhar, Radiative Transfer (Courier Dover, 1960).
  6. F. LeBlanc, An Introduction to Stellar Astrophysics (Wiley, 2010).
  7. M. A. Weinstein, “On the validity of Kirchhoff’s law for a freely radiating body,” Am. J. Phys. 28, 123–125 (1960). [CrossRef]
  8. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. 136, A954–A957(1964). [CrossRef]
  9. D. Kouznetsov, J.-F. Bisson, K. Takaichi, and K. Ueda, “High-power single-mode solid-state laser with a short wide unstable cavity,” J. Opt. Soc. Am. B 22, 1605–1619 (2005). [CrossRef]
  10. D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134, A299–A306 (1964). [CrossRef]
  11. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and W. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993). [CrossRef]
  12. B. M. Walsh, N. P. Barnes, and B. Di Bartolo, “Branching ratios, cross sections and radiative lifetimes of rare earth ions in solids: application to TM3+ and Ho3+ ions in LiYF4,” J. Appl. Phys. 83, 2772–2787 (1998). [CrossRef]
  13. R. S. Quimby, “Range of validity of McCumber theory in relating absorption and emission cross sections,” J. Appl. Phys. 92, 180–187 (2002). [CrossRef]
  14. M. J. F. Digonnet, E. Murphy-Chutorian, and D. G. Falquier, “Fundamental limitations of the McCumber relation applied to Er-doped silica and other amorphous-host lasers,” IEEE J. Quantum Electron. 38, 1629–1637 (2002). [CrossRef]
  15. R. Baierlein, “The elusive chemical potential,” Am. J. Phys. 69, 423–434 (2001). [CrossRef]
  16. J. P. Dowling and C. M. Bowden, “Atomic rates in homogeneous media with applications to photonic band structures,” Phys. Rev. A 46, 612–622 (1992). [CrossRef] [PubMed]
  17. M. D. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, and C. M. Bowden, “Measurement of spontaneous-emission enhancement near the one-dimensional photonic band edge of semiconductor heterostructures,” Phys. Rev. A 53, 2799–2803 (1996). [CrossRef] [PubMed]
  18. W. W. Chow, “Theory of emission from an active photonic lattice,” Phys. Rev. A 73, 013821 (2006). [CrossRef]
  19. N.-P. Harder and M. A. Green, “Thermophotonics,” Semicond. Sci. Technol. 18, S270–S278 (2003). [CrossRef]
  20. P. Ben-Abdallah, “Thermal antenna behavior for thin-film structures,” J. Opt. Soc. Am. A 21, 1368–1371 (2004). [CrossRef]
  21. P. Ben-Abdallah, “Single-defect Bragg stacks for high-power narrow-band thermal emission,” J. Appl. Phys. 97, 104910 (2005). [CrossRef]
  22. C. M. Cornelius and J. P. Dowling, “Modification of Planck blackbody radiation by photonic band-gap structures,” Phys. Rev. A 59, 4736–4746 (1999). [CrossRef]
  23. B. J. Lee and Z. M. Zhang, “Coherent thermal emission from modified periodic multilayer structures,” J. Heat Transfer 129, 17–26 (2007). [CrossRef]
  24. T. Ben-Messaoud, J. Riordon, A. Melanson, P. V. Ashrit, and A. Haché, “Photoactive periodic media,” Appl. Phys. Lett. 94, 111904 (2009). [CrossRef]
  25. M. Florescu, H. Lee, A. J. Stimpson, and J. Dowling, “Thermal emission and absorption of radiation in finite inverted-opal photonic crystals,” Phys. Rev. A 72, 033821 (2005). [CrossRef]
  26. M. Laroche, R. Carminati, and J. J. Greffet, “Coherent thermal antenna using a photonic crystal slab,” Phys. Rev. Lett. 96, 123903 (2006). [CrossRef] [PubMed]
  27. S. E. Han, “Theory of thermal emission from periodic structures,” Phys. Rev. B 80, 155108 (2009). [CrossRef]
  28. P. Yeh, Optical Waves in Layered Media (Wiley, 2005).
  29. L. D. Merkle, G. A. Newburgh, N. Ter-Gabrielyan, A. Michael, M. Dubinskii, “Temperature-dependent lasing and spectroscopy of Yb:Y2O3 and Yb:Sc2O3,” Opt. Commun. 281, 5855–5861(2008). [CrossRef]
  30. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, 1976).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited