OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 10 — Oct. 1, 2011
  • pp: 2486–2498

Supercontinuum generation from ~1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier

Ojas P. Kulkarni, Vinay V. Alexander, Malay Kumar, Michael J. Freeman, Mohammed N. Islam, Fred L. Terry, Jr., Manickam Neelakandan, and Allan Chan  »View Author Affiliations

JOSA B, Vol. 28, Issue 10, pp. 2486-2498 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1468 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A mid-IR supercontinuum (SC) fiber laser based on a thulium-doped fiber amplifier (TDFA) is demonstrated. A continuous spectrum extending from 1.9 to 4.5 μm is generated with 0.7 W time-average power in wave lengths beyond 3.8 μm . The laser outputs a total average power of up to 2.6 W from 8.5 m length of ZrF 4 BaF 2 LaF 3 AlF 3 NaF (ZBLAN) fiber, with an optical conversion efficiency of 9 % from the TDFA pump to the mid-IR SC. Optimal efficiency in generating wavelengths beyond 3.8 μm is achieved by reducing the losses in the TDFA stage and optimizing the ZBLAN fiber length. We demonstrate a novel (to our knowledge) approach of generating modulation instability-initiated SC starting from 1.55 μm by splitting the spectral shifting process into two steps. In the first step, amplified approximately nanosecond-long 1.55 μm laser diode pulses with 2.5 kW peak power generate a SC extending beyond 2.1 μm in 25 m length of standard single-mode fiber (SMF). The 2 μm wavelength components at the standard SMF output are amplified in a TDFA and coupled into ZBLAN fiber leading to mid-IR SC generation. Up to 270 nm SC long wavelength edge extension and 2.5 × higher optical conversion efficiency to wavelengths beyond 3.8 μm are achieved by switching an Er:Yb-based power amplifier stage with a TDFA. The laser also demonstrates scalability in the average output power with respect to the pulse repetition rate and the amplifier pump power. Numerical simulations are performed by solving the generalized nonlinear Schrödinger equation, which show the long wavelength edge of the SC to be limited by the loss in ZBLAN.

© 2011 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

Original Manuscript: June 7, 2011
Manuscript Accepted: August 1, 2011
Published: September 26, 2011

Ojas P. Kulkarni, Vinay V. Alexander, Malay Kumar, Michael J. Freeman, Mohammed N. Islam, Fred L. Terry, Jr., Manickam Neelakandan, and Allan Chan, "Supercontinuum generation from ~1.9 to 4.5 μmin ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier," J. Opt. Soc. Am. B 28, 2486-2498 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Xia, Z. Xu, M. N. Islam, F. L. Terry Jr., M. J. Freeman, A. Zakel, and J. Mauricio, “10.5 W time-averaged power mid-IR supercontinuum generation extending beyond 4 μm with direct pulse pattern modulation,” IEEE J. Sel. Top. Quantum Electron. 15, 422–434 (2009). [CrossRef]
  2. S. T. Sanders, “A wavelength-agile source for broadband sensing,” Appl. Phys. B 75, 799–802 (2002). [CrossRef]
  3. H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Standoff and arms-length detection of chemical with single-beam coherent anti-Stokes Raman scattering,” Appl. Opt. 48, B17–B22 (2009). [CrossRef] [PubMed]
  4. K.-D. F. Büchter, H. Herrmann, C. Langrock, M. M. Fejer, and W. Sohler, “All-optical Ti:PPLN wavelength conversion modules for free-space optical transmission links in the mid-infrared,” Opt. Lett. 34, 470–472 (2009). [CrossRef] [PubMed]
  5. C. R. Philbrick, D. M. Brown, A. H. Willitsford, P. S. Edwards, A. M. Wyant, Z. Z. Liu, C. T. Chadwick, and H. Hallen, “Remote sensing of chemical species in the atmosphere,” presented at the Fourth Symposium on Lidar Atmospheric Applications, Phoenix, Arizona ( January 11–15, 2009), http://ams.confex.com/ams/pdfpapers/150051.pdf.
  6. I.T.Sorokina and K.L.Vodopyanov, eds., Solid-State Mid-Infrared Laser Sources (Springer-Verlag, 2003). [CrossRef]
  7. M. Razeghi, S. Slivken, Y. Bai, and S. R. Darvish, “The quantum cascade laser: a versatile and powerful tool,” Opt. Photon. News 19, 42–47 (2008). [CrossRef]
  8. Y. Bonetti and J. Faist, “Quantum cascade lasers: Entering the mid-infrared,” Nat. Photon. 3, 32–34 (2009). [CrossRef]
  9. E. Lippert, H. Fonnum, G. Arisholm, and K. Stenersen, “A 22 watt mid-infrared optical parametric oscillator with V-shaped 3-mirror ring resonator,” Opt. Express 18, 26475–26483 (2010). [CrossRef] [PubMed]
  10. Y. Peng, W. Wang, X. Wei, and D. Li, “High-efficiency mid-infrared optical parametric oscillator based on PPMgO:CLN,” Opt. Lett. 34, 2897–2899 (2009). [CrossRef] [PubMed]
  11. M. Pollnau and S. D. Jackson, “Advances in mid-infrared fiber lasers,” in Mid-Infrared Coherent Sources And Applications, M.Ebrahim-Zadeh and I.T.Sorokina, eds. (Springer, 2008), pp. 315–346. [CrossRef]
  12. J. Mandon, E. Sorokin, I. T. Sorokina, G. Guelachvili, and N. Picqué, “Supercontinua for high-resolution absorption multiplex infrared spectroscopy,” Opt. Lett. 33, 285–287 (2008). [CrossRef] [PubMed]
  13. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultrabroadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” Appl. Phys. Lett. 95, 161103 (2009). [CrossRef]
  14. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16, 7161–7168 (2008). [CrossRef] [PubMed]
  15. C. Xia, M. Kumar, M.-Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry Jr., M. J. Freeman, D. A. Nolan, and W. A. Wood, “Supercontinuum generation in silica fibers by amplified nanosecond laser diode pulses,” IEEE J. Sel. Top. Quantum Electron. 13, 789–797 (2007). [CrossRef]
  16. C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry Jr., M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15, 865–871(2007). [CrossRef] [PubMed]
  17. M. Kumar, Optical Sciences Laboratory, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109, USA, and M. N. Islam are preparing a manuscript to be called “Mid-infrared supercontinuum fiber laser-based stand-off reflection spectroscopy.”
  18. G. P. Frith and D. G. Lancaster, “Power scalable and efficient 790 nm pumped Tm3+-doped fiber lasers,” Proc. SPIE 6102, 610208 (2006). [CrossRef]
  19. A. Carter, J. Farroni, K. Tankala, B. Samson, D. Machewirth, N. Jacobson, W. Torruellas, Y. Chen, M. Cheng, A. Galvanauskas, and A. Sanchez, “Robustly single-mode polarization maintaining Er/Yb co-doped LMA fiber for high power applications,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), paper CTuS6. [PubMed]
  20. G. Imeshev and M. Fermann, “230 kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express 13, 7424–7431 (2005). [CrossRef] [PubMed]
  21. K. Kieu and F. W. Wise, “Soliton thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photon. Technol. Lett. 21, 128–130 (2009). [CrossRef]
  22. P. T. Rakich, Y. Fink, and M. Soljačić, “Efficient mid-IR spectral generation via spontaneous fifth-order cascaded-Raman amplification in silica fibers,” Opt. Lett. 33, 1690–1692 (2008). [CrossRef] [PubMed]
  23. M. Jiang and P. Tayebati, “Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser,” Opt. Lett. 32, 1797–1799 (2007). [CrossRef] [PubMed]
  24. J. A. Harrington, Infrared Fibers and Their Applications (SPIE, 2004). [CrossRef]
  25. D. L. Auble and T. P. Meyers, “An open path, fast response infrared absorption gas analyzer for H2O and CO2,” Bound.-Lay. Meteorol. 59, 243–256 (1992). [CrossRef]
  26. S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express 14, 50–57 (2006). [CrossRef] [PubMed]
  27. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  28. G. Chang, T. B. Norris, and H. G. Winful, “Optimization of supercontinuum generation in photonic crystal fibers for pulse compression,” Opt. Lett. 28, 546–548 (2003). [CrossRef] [PubMed]
  29. A. Saissy, J. Botineau, L. Macon, and G. Maze, “Raman scattering in a fluorozirconate glass optical fiber,” J. Phys. Lett. 46, 289–294 (1985). [CrossRef]
  30. M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30, 946–951(2008). [CrossRef]
  31. X. Zhu and N. Peyghambarian, “High-power ZBLAN glass fiber lasers: review and prospect,” Adv. Optoelectron. 2010, 501956(2010). [CrossRef]
  32. A. Lyakh, C. Pflügl, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, C. Kumar, and N. Patel, “1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm,” Appl. Phys. Lett. 92, 111110 (2008). [CrossRef]
  33. D. Faucher, A. Fraser, P. Zivojinovic, X. P. Godmaire, É. Weynant, M. Bernier, and R. Vallée, “High power handling shape memory alloy optical fiber connector,” Appl. Opt. 48, 5664–5667 (2009). [CrossRef] [PubMed]
  34. K. Li, G. Zhang, and L. Hu, “Watt-level ∼2 μm laser output in Tm3+-doped tungsten tellurite glass double-cladding fiber,” Opt. Lett. 35, 4136–4138 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited