OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 10 — Oct. 1, 2011
  • pp: 2529–2536

Assessing the maximum transmittance of periodic metal-dielectric multilayers

T. W. Allen and R. G. DeCorby  »View Author Affiliations


JOSA B, Vol. 28, Issue 10, pp. 2529-2536 (2011)
http://dx.doi.org/10.1364/JOSAB.28.002529


View Full Text Article

Enhanced HTML    Acrobat PDF (917 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show that the theory of potential transmittance (PT) is useful for problems involving photon tunneling through metal-dielectric stacks, regardless of whether the tunneling is mediated by Fabry–Perot or surface-plasmon resonances. A unifying principle is that, given a total thickness of metal, subdividing the metal into a larger number of thin films increases the maximum PT. For Fabry–Perot-based tunneling, we apply the concept of equivalent layers to stacks comprising dielectric-metal-dielectric unit cells and explore the conditions for impedance matching to an external air medium. This approach demonstrates that, to optimize transmittance, thicker metal films require higher-index dielectric spacers. For surface-plasmon-mediated tunneling, we confirm that the maximum transmittance also lies within the limits predicted by PT theory.

© 2011 Optical Society of America

OCIS Codes
(230.4170) Optical devices : Multilayers
(310.7005) Thin films : Transparent conductive coatings

ToC Category:
Thin Films

History
Original Manuscript: May 17, 2011
Revised Manuscript: August 23, 2011
Manuscript Accepted: August 25, 2011
Published: September 29, 2011

Citation
T. W. Allen and R. G. DeCorby, "Assessing the maximum transmittance of periodic metal-dielectric multilayers," J. Opt. Soc. Am. B 28, 2529-2536 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-10-2529


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. W. Baumeister, “Optical tunneling and its applications to optical filters,” Appl. Opt. 6, 897–906 (1967). [CrossRef] [PubMed]
  2. P. W. Baumeister, “Radiant power flow and absorptance in thin films,” Appl. Opt. 8, 423–436 (1969). [CrossRef] [PubMed]
  3. M. J. Bloemer and M. Scalora, “Transmissive properties of Ag/MgF2 photonic band gaps,” Appl. Phys. Lett. 72, 1676–1678(1998). [CrossRef]
  4. C.-S. Kee, K. Kim, and H. Lim, “Optical resonant transmission in metal-dielectric multilayers,” J. Opt. A: Pure Appl. Opt. 6, 22–25 (2004). [CrossRef]
  5. R. S. Bennink, Y.-K. Yoon, R. W. Boyd, and J. E. Sipe, “Accessing the optical nonlinearity of metals with metal-dielectric photonic bandgap structures,” Opt. Lett. 24, 1416–1418 (1999). [CrossRef]
  6. M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007). [CrossRef]
  7. R. Dragila, B. Luther-Davies, and S. Vukovic, “High transparency of classically opaque metallic films,” Phys. Rev. Lett. 55, 1117–1120 (1985). [CrossRef] [PubMed]
  8. S. Hayashi, H. Kurokawa, and H. Oga, “Observation of resonant photon tunneling in photonic double barrier structures,” Opt. Rev. 6, 204–210 (1999). [CrossRef]
  9. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419–1430(2003).
  10. P. H. Berning and A. F. Turner, “Induced transmission in absorbing films applied to band pass filter design,” J. Opt. Soc. Am. 47, 230–239 (1957). [CrossRef]
  11. G.-Q. Du, H.-T. Jiang, L. Wang, Z.-S. Wang, and H. Chen, “Enhanced transmittance and fields of a thick metal sandwiched between two dielectric photonic crystals,” J. Appl. Phys. 108, 103111 (2010). [CrossRef]
  12. H. A. Macleod, Thin-Film Optical Filters, 3rd ed. (Institute of Physics Publishing, 2001). [CrossRef]
  13. B. V. Landau and P. H. Lissberger, “Theory of induced-transmission filters in terms of the concept of equivalent layers,” J. Opt. Soc. Am. 62, 1258–1264 (1972). [CrossRef]
  14. H. A. Macleod, “A new approach to the design of metal-dielectric thin-film optical coatings,” Opt. Acta 25, 93–106 (1978). [CrossRef]
  15. P. H. Lissberger, “Coatings with induced transmission,” Appl. Opt. 20, 95–104 (1981). [CrossRef] [PubMed]
  16. I. R. Hooper, T. W. Preist, and J. R. Sambles, “Making tunnel barriers (including metals) transparent,” Phys. Rev. Lett. 97, 053902 (2006). [CrossRef] [PubMed]
  17. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998). [CrossRef]
  18. G. Leftheriotis, P. Yianoulis, and D. Patrikios, “Design and optical properties of optimized ZnS/Ag/ZnS thin films for energy saving applications,” Thin Solid Films 306, 92–99 (1997). [CrossRef]
  19. H. Cho, C. Yun, and S. Yoo, “Multilayer transparent electrode for organic light-emitting diodes: tuning its optical characteristics,” Opt. Express 18, 3404–3414 (2010). [CrossRef] [PubMed]
  20. D. Owens, C. Fuentes-Hernandez, and B. Kippelen, “Optical properties of one-dimensional metal-dielectric photonic band-gap structures with low-index dielectrics,” Thin Solid Films 517, 2736–2741 (2009). [CrossRef]
  21. Y.-K. Choi, Y.-K. Ha, J.-E. Kim, H. Y. Park, and K. Kim, “Antireflection film in one-dimensional metallo-dielectric photonic crystals,” Opt. Commun. 230, 239–243 (2004). [CrossRef]
  22. P. Yeh, Optical Waves in Layered Media (Wiley, 2005).
  23. S. Blair, “Anomalous loss scaling in periodically absorbing media,” J. Opt. Soc. Am. B 18, 1943–1948 (2001). [CrossRef]
  24. M. Yoshida, S. Tomita, H. Yanagi, and S. Hayashi, “Resonant photon transport through metal-insulator-metal multilayers consisting of Ag and SiO2,” Phys. Rev. B 82, 045410 (2010). [CrossRef]
  25. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006). [CrossRef] [PubMed]
  26. Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Lett. 7, 3360–3365 (2007). [CrossRef] [PubMed]
  27. N. Mattiucci, G. D’Aguanno, M. Scalora, M. J. Bloemer, and C. Sibilia, “Transmission function properties for multi-layered structures: application to super-resolution,” Opt. Express 17, 17517–17528 (2009). [CrossRef] [PubMed]
  28. S. Feng, J. Merle Elson, and P. L. Overfelt, “Transparent photonic band in metallodielectric nanostructures,” Phys. Rev. B 72, 085117 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited