OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 11 — Nov. 1, 2011
  • pp: 2584–2591

Features of the perfect transmission in Thue–Morse dielectric multilayers

W. J. Hsueh, S. J. Wun, Z. J. Lin, and Y. H. Cheng  »View Author Affiliations


JOSA B, Vol. 28, Issue 11, pp. 2584-2591 (2011)
http://dx.doi.org/10.1364/JOSAB.28.002584


View Full Text Article

Enhanced HTML    Acrobat PDF (669 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We proposed a novel method to determine the perfect transmission (PT) of photonics through the Thue–Morse dielectric multilayers for arbitrary basis thickness and generation orders based on the band edge map diagram. As the order of the system increases, the density of resonance peaks increases exponentially. However, the PTs of the resonance peaks are kept even if the peaks become denser for higher-order systems. We present two iterative rules to determine the frequency of the resonance peaks for an arbitrary order of the multilayers. In addition, simple equations are proposed to approximate the repeated band edges and the PT for the arbitrary incident angle of the system with arbitrary order and basis thickness.

© 2011 Optical Society of America

OCIS Codes
(230.4170) Optical devices : Multilayers
(310.6860) Thin films : Thin films, optical properties
(160.5293) Materials : Photonic bandgap materials

ToC Category:
Optical Devices

History
Original Manuscript: June 28, 2011
Revised Manuscript: August 13, 2011
Manuscript Accepted: August 30, 2011
Published: October 4, 2011

Citation
W. J. Hsueh, S. J. Wun, Z. J. Lin, and Y. H. Cheng, "Features of the perfect transmission in Thue–Morse dielectric multilayers," J. Opt. Soc. Am. B 28, 2584-2591 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-11-2584


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  2. J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, “Omnidirectional reflection from a one-dimensional photonic crystal,” Opt. Lett. 23, 1573–1575 (1998). [CrossRef]
  3. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679–1682 (1998). [CrossRef] [PubMed]
  4. D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, “Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys. A 68, 25–28 (1999). [CrossRef]
  5. D. Bria, B. Djafari-Rouhani, A. Akjou, L. Dobrzynski, J. P. Vigneron, E. H. El Boudouti, and A. Nougaoui, “Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials,” Phys. Rev. E 69, 066613 (2004). [CrossRef]
  6. I. Nusinsky and A. A. Hardy, “Band-gap analysis of one-dimensional photonic crystals and conditions for gap closing,” Phys. Rev. B 73, 125104 (2006). [CrossRef]
  7. W. J. Hsueh, S. J. Wun, and T. H. Yu, “Characterization of omnidirectional band gaps in multiple frequency ranges of one-dimensional photonic crystals,” J. Opt. Soc. Am. B 27, 1092–1098 (2010). [CrossRef]
  8. W. J. Hsueh and S. J. Wun, “Simple expressions for the maximum omnidirectional bandgap of bilayers photonic crystals,” Opt. Lett. 36, 1581–1583 (2011). [CrossRef] [PubMed]
  9. K. Busch, G. von Freymann, S. Linden, S. F. Mingaleev, L. Tkeshelashvili, and M. Wegener, “Periodic nanostructures for photonics,” Phys. Rep. 444, 101–202 (2007). [CrossRef]
  10. R. W. Peng, Y. M. Liu, X. Q. Huang, F. Qiu, M. Wang, A. Hu, S. S. Jiang, D. Feng, L. Z. Ouyang, and J. Zou, “Dimerlike positional correlation and resonant transmission of electromagnetic waves in aperiodic multilayers,” Phys. Rev. B 69, 165109 (2004). [CrossRef]
  11. S. V. Zhukovsky, “Perfect transmission and highly asymmetric light localization in photonic multilayers,” Phys. Rev. A 81, 053808 (2010). [CrossRef]
  12. Y. Lu, R. W. Peng, Z. Wang, Z. H. Tang, X. Q. Huang, M. Wang, Y. Qiu, A. Hu, S. S. Jiang, and D. Feng, “Resonant transmission of light waves in dielectric heterostructures,” J. Appl. Phys. 97, 123106 (2005). [CrossRef]
  13. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53, 1951–1953 (1984). [CrossRef]
  14. E. L. Albuquerque and M. G. Cottam, “Theory of elementary excitations in quasiperiodic structures,” Phys. Rep. 376, 225–337(2003). [CrossRef]
  15. M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization in optics: quasiperiodic media,” Phys. Rev. Lett. 58, 2436–2438(1987). [CrossRef] [PubMed]
  16. M. Dulea, M. Severin, and R. Riklund, “Transmission of light through deterministic aperiodic non-Fibonacci multilayers,” Phys. Rev. B 42, 3680–3689 (1990). [CrossRef]
  17. X. Yang, Y. Liu, and X. Fu, “Transmission properties of light through the Fibonacci-class multilayers,” Phys. Rev. B 59, 4545–4548 (1999). [CrossRef]
  18. X. Wang, U. Grimm, and M. Schreiber, “Trace and antitrace maps for aperiodic sequences: Extensions and applications,” Phys. Rev. B 62, 14020–14031 (2000). [CrossRef]
  19. N. H. Liu, “Propagation of light waves in Thue-Morse dielectric multilayers,” Phys. Rev. B 55, 3543–3547 (1997). [CrossRef]
  20. M. S. Vasconcelos and E. L. Albuquerque, “Transmission fingerprints in quasiperiodic dielectric multilayers,” Phys. Rev. B 59, 11128–11131 (1999). [CrossRef]
  21. R. Pelster, V. Gasparian, and G. Nimtz, “Propagation of plane waves and of waveguide modes in quasiperiodic dielectric heterostructures,” Phys. Rev. E 55, 7645–7655 (1997). [CrossRef]
  22. L. Dal Negro, J. H. Yi, V. Nguyen, Y. Yi, J. Michel, and L. C. Kimerling, “Spectrally enhanced light emission from aperiodic photonic structures,” Appl. Phys. Lett. 86, 261905 (2005). [CrossRef]
  23. M. Ghulinyan, C. J. Oton, L. Dal Negro, L. Pavesi, R. Sapienza, M. Colocci, and D. S. Wiersma, “Light-pause propagation in Fibonacci quasicrystals,” Phys. Rev. B 71, 094204 (2005). [CrossRef]
  24. V. R. Tuz, “Optical properties of a quasi-periodic generalized Fibonacci structure of chiral and material layers,” J. Opt. Soc. Am. B 26, 627–632 (2009). [CrossRef]
  25. W. J. Hsueh and J. C. Lin, “Numerical stable method for the analysis of Bloch waves in a general one-dimensional photonic crystal cavity,” J. Opt. Soc. Am. B 24, 2249–2258 (2007). [CrossRef]
  26. W. J. Hsueh, C. T. Chen, and C. H. Chen, “Omnidirectional band gap in Fibonacci photonic crystal with metamaterials using a band-edge formalism,” Phys. Rev. A 78, 013836 (2008). [CrossRef]
  27. H. Lei, J. Chen, G. Nouet, S. Feng, Q. Gong, and X. Jiang, “Photonic band gap structures in the Thue-Morse lattice,” Phys. Rev. B 75, 205109 (2007). [CrossRef]
  28. X. Jiang, Y. Zhang, and S. Feng, “Photonic band gaps and localization in the Thue-Morse structures,” Appl. Phys. Lett. 86, 201110 (2005). [CrossRef]
  29. L. Moretti, I. Rea, L. Rotiroti, I. Rendina, G. Abbate, A. Marino, and L. De Stefano, “Photonic bandgap analysis of Thue-Morse multilayers made of porous silicon,” Opt. Express 14, 6264–6272(2006). [CrossRef] [PubMed]
  30. L. Moretti and V. Mocella, “Two-dimensional photonic aperiodic crystals based on Thue-Morse sequence,” Opt. Express 15, 15314–15323 (2007). [CrossRef] [PubMed]
  31. F. Qiu, R. W. Peng, X. Q. Huang, X. F. Hu, M. Wang, A. Hu, S. S. Jiang, and D. Feng, “Omnidirectional reflection of electromagnetic waves on Thue-Morse dielectric multilayers,” Europhys. Lett. 68, 658–663 (2004). [CrossRef]
  32. R. W. Peng, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jiang, “Symmetry-induced perfect transmission of light waves in quasiperiodic dielectric multilayers,” Appl. Phys. Lett. 80, 3063–3065 (2002). [CrossRef]
  33. X. Q. Huang, S. S. Jiang, R. W. Peng, and A. Hu, “Perfect transmission and self-similar optical transmission spectra in symmetric Fibonacci-class multilayers,” Phys. Rev. B 63, 245104(2001). [CrossRef]
  34. R. Nava, J. Taguena-Martinez, J. A. Del Rio, and G. G. Naumis, “Perfect light transmission in Fibonacci arrays of dielectric multilayers,” J. Phys. Condens. Matter 21, 155901 (2009). [CrossRef] [PubMed]
  35. E. Macia, “Optical engineering with Fibonacci dielectric multilayers,” Appl. Phys. Lett. 73, 3330–3332 (1998). [CrossRef]
  36. F. Qiu, R. W. Peng, X. Q. Huang, Y. M. Liu, M. Wang, A. Hu, and S. S. Jiang, “Resonant transmission and frequency trifurcation of light waves in Thue-Morse dielectric multilayers,” Europhys. Lett. 63, 853–859 (2003). [CrossRef]
  37. M. S. Vasconcelos, E. L. Albuquerquey, and A. M. Mariz, “Optical localization in quasi-periodic multilayers,” J. Phys. Condens. Matter 10, 5839–5849 (1998). [CrossRef]
  38. F. Axel, J. P. Allouche, M. Kleman, M. Mendes-France, and J. Peyriere, “Vibrational modes in a one dimensional quasi-qlloy: the Morse case,” J. Phys. (Paris), Colloq. 47, C3–181 (1986). [CrossRef]
  39. F. Axel and J. Peyriere, “Spectrum and extended states in a harmonic chain with controlled disorder: effects of the Thue-Morse symmetry,” J. Stat. Phys. 57, 1013–1047 (1989). [CrossRef]
  40. C. S. Ryu, G. Y. Oh, and M. H. Lee, “Extended and critical wave functions in a Thue-Morse chain,” Phys. Rev. B 46, 5162–5168(1992). [CrossRef]
  41. A. Ghosh and S. N. Karmakar, “Trace map of a general aperiodic Thue-Morse chain: electronic properties,” Phys. Rev. B 58, 2586–2590 (1998). [CrossRef]
  42. S. F. Cheng and G. J. Jin, “Trace map and eigenstates of a Thue-Morse chain in a general model,” Phys. Rev. B 65, 134206(2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited