OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 11 — Nov. 1, 2011
  • pp: 2617–2624

Trapping of slow solitons by longitudinal inhomogeneity in high-index photonic crystal fibers

Jesper Lægsgaard  »View Author Affiliations

JOSA B, Vol. 28, Issue 11, pp. 2617-2624 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (431 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Soliton propagation in slow-light states of nonuniform high-index photonic crystal fibers (PCFs) is studied numerically by a recently developed time-propagating 1 + 1 D equation. It is demonstrated that very slow solitons can be highly stable against even short-period roughness. Soliton trapping by longitudinal inhomogeneities is also found as the soliton velocity decreases due to Raman scattering. Practical limitations and opportunities based on the simulation results are briefly discussed.

© 2011 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.5650) Nonlinear optics : Raman effect
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 21, 2011
Revised Manuscript: August 26, 2011
Manuscript Accepted: September 2, 2011
Published: October 7, 2011

Jesper Lægsgaard, "Trapping of slow solitons by longitudinal inhomogeneity in high-index photonic crystal fibers," J. Opt. Soc. Am. B 28, 2617-2624 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Baba, “Slow light in photonic crystals,” Nat. Photon. 2, 465–473 (2008). [CrossRef]
  2. L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenovic, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010). [CrossRef]
  3. J. G. Pedersen, S. Xiao, and N. A. Mortensen, “Limits of slow light in photonic crystals,” Phys. Rev. B 78, 153101 (2008). [CrossRef]
  4. A. F. Oskooi, J. D. Joannopoulos, and S. G. Johnson, “Zero—group-velocity modes in chalcogenide holey photonic-crystal fibers,” Opt. Express 17, 10082–10090 (2009). [CrossRef] [PubMed]
  5. A. V. Yulin and D. V. Skryabin, “Slowing down of solitons by intrapulse raman scattering in fibers with frequency cutoff,” Opt. Lett. 31, 3092–3094 (2006). [CrossRef] [PubMed]
  6. J. Lægsgaard, “Zero-velocity solitons in high-index photonic crystal fibers,” J. Opt. Soc. Am. B 28, 37–44 (2011). [CrossRef]
  7. J. P. Gordon, “Dispersive perturbations of solitons of the nonlinear Schrödinger-equation,” J. Opt. Soc. Am. B 9, 91–97 (1992). [CrossRef]
  8. S. M. J. Kelly, “Characteristic side-band instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807(1992). [CrossRef]
  9. Y. S. Kivshar, Z. Fei, and L. Vázquez, “Resonant soliton-impurity interactions,” Phys. Rev. Lett. 67, 1177–1180 (1991). [CrossRef] [PubMed]
  10. J. Leon, P. Anghel-Vasilescu, F. Ginovart, and N. Allegra, “Scattering of slow-light gap solitons with charges in a two-level medium,” J. Phys. A: Math. Theor. 42, 055101 (2009). [CrossRef]
  11. K. Stoychev, M. Primatarowa, and R. Kamburova, “Resonant scattering of nonlinear Schrodinger solitons from potential wells,” Phys. Rev. E 70, 066622 (2004). [CrossRef]
  12. S. Johnson, M. Povinelli, M. Soljacic, A. Karalis, S. Jacobs, and J. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81, 283–293(2005). [CrossRef]
  13. M. Patterson and S. Hughes, “Interplay between disorder-induced scattering and local field effects in photonic crystal waveguides,” Phys. Rev. B 81245321 (2010). [CrossRef]
  14. S. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, J. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E 65, 066611 (2002). [CrossRef]
  15. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2007).
  16. J. Lægsgaard, “Theory of surface second-harmonic generation in silica nanowires,” J. Opt. Soc. Am. B 27, 1317–1324 (2010). [CrossRef]
  17. M. Sumetsky and Y. Dulashko, “Radius variation of optical fibers with angstrom accuracy,” Opt. Lett. 35, 4006–4008(2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited