OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 11 — Nov. 1, 2011
  • pp: 2656–2666

Mapping multiple surface-plasmon-polariton-wave modes at the interface of a metal and a chiral sculptured thin film

John A. Polo, Jr., Tom G. Mackay, and Akhlesh Lakhtakia  »View Author Affiliations


JOSA B, Vol. 28, Issue 11, pp. 2656-2666 (2011)
http://dx.doi.org/10.1364/JOSAB.28.002656


View Full Text Article

Enhanced HTML    Acrobat PDF (1909 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We charted multiple surface-plasmon-polariton (SPP)-wave modes at the planar interface between a metal and a chiral sculptured thin film (STF) in terms of the period, vapor flux angle, and orientation angle of the latter material. Two distinct scenarios were considered: one based on a canonical boundary-value problem involving half-spaces filled with the metal and the chiral STF and another based upon a modified Kretschmann configuration for ease of implementation. Calculations using empirical data for the constitutive relations of both partnering materials show that the number and nature of the SPP-wave modes are highly dependent on all three parameters.

© 2011 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(240.6690) Optics at surfaces : Surface waves
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 9, 2011
Revised Manuscript: August 30, 2011
Manuscript Accepted: September 8, 2011
Published: October 12, 2011

Citation
John A. Polo, Jr., Tom G. Mackay, and Akhlesh Lakhtakia, "Mapping multiple surface-plasmon-polariton-wave modes at the interface of a metal and a chiral sculptured thin film," J. Opt. Soc. Am. B 28, 2656-2666 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-11-2656


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999). [CrossRef]
  2. J.Homola, ed., Surface Plasmon Resonance Based Sensors (Springer, 2006). [CrossRef]
  3. I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008). [CrossRef]
  4. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23A, 2135–2136 (1968).
  5. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Phys. 216, 398–410 (1968). [CrossRef]
  6. M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film,” J. Nanophoton. 2, 021910 (2008). [CrossRef]
  7. M. A. Motyka and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part II: Arbitrary incidence,” J. Nanophoton. 3, 033502 (2009). [CrossRef]
  8. J. A. Polo, Jr., and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. Lond. A 465, 87–107 (2009). [CrossRef]
  9. J. A. Polo, Jr., and A. Lakhtakia, “Energy flux in a surface-plasmon-polariton wave bound to the planar interface of a metal and a structurally chiral material,” J. Opt. Soc. Am. A 26, 1696–1703 (2009). [CrossRef]
  10. A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: Experimental evidence,” J. Nanophoton. 3, 033506(2009). [CrossRef]
  11. Devender, D. P. Pulsifer, and A. Lakhtakia, “Multiple surface plasmon polariton waves,” Electron. Lett. 45, 1137–1138(2009). [CrossRef]
  12. T. H. Gilani, N. Dushkina, W. L. Freeman, M. Z. Numan, D. N. Talwar, and D. P. Pulsifer, “Surface plasmon resonance due to the interface of a metal and a chiral sculptured thin film,” Opt. Eng. 49, 120503 (2010). [CrossRef]
  13. J. A. Polo, Jr., and A. Lakhtakia, “Surface electromagnetic waves: a review,” Laser Photon. Rev. 5, 234–246 (2011). [CrossRef]
  14. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977). [CrossRef]
  15. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105(1978). [CrossRef]
  16. A. Lakhtakia and R. Messier, Sculptured Thin Films: Nanoengineered Morphology and Optics (SPIE, 2005). [CrossRef]
  17. M. Faryad and A. Lakhtakia, “On surface plasmon-polariton waves guided by the interface of a metal and a rugate filter with a sinusoidal refractive-index profile,” J. Opt. Soc. Am. B 27, 2218–2223 (2010). [CrossRef]
  18. M. Faryad, H. Maab, and A. Lakhtakia, “Rugate-filter-guided propagation of multiple Fano waves,” J. Opt. 13, 075101(2011). [CrossRef]
  19. T. G. Mackay and A. Lakhtakia, “Modeling chiral sculptured thin films as platforms for surface-plasmonic-polaritonic optical sensing,” IEEE Sens. J., doi:10.1109/JSEN.2010.2067448 (to be published). [CrossRef]
  20. R. Messier, “The nano-world of thin films,” J. Nanophoton. 2, 021995 (2008). [CrossRef]
  21. R. Messier, V. C. Venugopal, and P. D. Sunal, “Origin and evolution of sculptured thin films,” J. Vac. Sci. Technol. A 18, 1538–1545 (2000). [CrossRef]
  22. N. O. Young and J. Kowal, “Optically active fluorite films,” Nature 183, 104–105 (1959). [CrossRef]
  23. K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384, 616 (1996). [CrossRef]
  24. I. J. Hodgkinson, Q. H. Wu, and J. Hazel, “Empirical equations for the principal refractive indices and column angle of obliquely deposited films of tantalum oxide, titanium oxide, and zirconium oxide,” Appl. Opt. 37, 2653–2659 (1998). [CrossRef]
  25. A. Lakhtakia, “Surface-plasmon wave at the planar interface of a metal film and a structurally chiral medium,” Opt. Commun. 279, 291–297 (2007). [CrossRef]
  26. A. Lakhtakia and J. B. Geddes III, “Thin-film metamaterials called sculptured thin films,” in Trends in Nanophysics, A.Aldea and V.Bârsan, eds. (Springer, 2010), pp. 59–71. [CrossRef]
  27. A. Lakhtakia, “Reflection of an obliquely incident plane wave by a half space filled by a helicoidal bianisotropic medium,” Phys. Lett. A 374, 3887–3894 (2010). [CrossRef]
  28. M. Faryad and A. Lakhtakia, “Grating-coupled excitation of multiple surface plasmon-polariton waves,” Phys. Rev. A , 84, 033852 (2011). [CrossRef]
  29. I. Dolev, M. Volodarsky, G. Porat, and A. Arie, “Multiple coupling of surface plasmons in quasiperiodic gratings,” Opt. Lett. 36, 1584–1586 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited