OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 11 — Nov. 1, 2011
  • pp: 2702–2711

Second harmonic generation of individual centrosymmetric sphere excited by a tightly focused beam

Bingzhong Huo, Xianghui Wang, Shengjiang Chang, Ming Zeng, and Guohua Zhao  »View Author Affiliations

JOSA B, Vol. 28, Issue 11, pp. 2702-2711 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1700 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on vector diffraction theory, an analytical integral representation to calculate the field gradient of focused electromagnetic fields is derived by using the differential recursion formula between the Bessel functions with different order. Within the phenomenological model for second harmonic generation (SHG) of centrosymmetric material, the second harmonic (SH) response of a single centrosymmetric spherical particle excited by a focused beam under different values of the NA is investigated theoretically. The results show that, with increasing NA, the SH radiation pattern of the surface response hardly changes. For the larger value of the NA, because the elements of the field gradient are almost the same order of magnitude and the relative magnitudes of E y and E z increase, the bulk response related to the parameters δ and ζ become remarkable.

© 2011 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.3970) Nonlinear optics : Microparticle nonlinear optics
(240.4350) Optics at surfaces : Nonlinear optics at surfaces
(260.1960) Physical optics : Diffraction theory
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Nonlinear Optics

Original Manuscript: September 2, 2011
Manuscript Accepted: September 15, 2011
Published: October 20, 2011

Bingzhong Huo, Xianghui Wang, Shengjiang Chang, Ming Zeng, and Guohua Zhao, "Second harmonic generation of individual centrosymmetric sphere excited by a tightly focused beam," J. Opt. Soc. Am. B 28, 2702-2711 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. A. Litwin, J. E. Sipe, and H. M. van Driel, “Picosecond and nanosecond laser-induced second-harmonic generation from centrosymmetric semiconductors,” Phys. Rev. B 31, 5543–5546(1985). [CrossRef]
  2. F. Brown and M. Matsuoka, “Effect of adsorbed surface layers on second-harmonic light from silver,” Phys. Rev. 185, 985–987(1969). [CrossRef]
  3. Y. R. Shen, “Surface properties probed by second-harmonic and sum-frequency generation,” Nature 337, 519–525 (1989). [CrossRef]
  4. M. Jacobsohn and U. Banin, “Size dependence of second harmonic generation in CdSe nanocrystal quantum dots,” J. Phys. Chem. B 104, 1–5 (2000). [CrossRef]
  5. R. C. Johnson, J. Li, J. T. Hupp, and G. C. Schatz, “Hyper-Rayleigh scattering studies of silver, copper, and platinum nanoparticle suspensions,” Chem. Phys. Lett. 356, 534–540(2002). [CrossRef]
  6. C. C. Neacsu, G. A. Reider, and M. B. Raschke, “Second-harmonic generation from nanoscopic metal tips: symmetry selection rules for single asymmetric nanostructures,” Phys. Rev. B 71, 201402 (2005). [CrossRef]
  7. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007). [CrossRef] [PubMed]
  8. H. Wang, E. C. Y. Yan, E. Borguet, and K. B. Eisenthal, “Second harmonic generation from the surface of centrosymmetric particles in bulk solution,” Chem. Phys. Lett. 259, 15–20(1996). [CrossRef]
  9. N. Yang, W. E. Angerer, and A. G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles,” Phys. Rev. Lett. 87, 103902 (2001). [CrossRef] [PubMed]
  10. X. Vidal, A. Fedyanin, A. Molinos-Gómez, S. Rao, J. Martorell, and D. Petrov, “Nonlinear optical response from single spheres coated by a nonlinear monolayer,” Opt. Lett. 33, 699–701(2008). [CrossRef] [PubMed]
  11. J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21, 1328–1347(2004). [CrossRef]
  12. J. I. Dadap, “Optical second-harmonic scattering from cylindrical particles,” Phys. Rev. B 78, 205322 (2008). [CrossRef]
  13. V. L. Brudny, B. S. Mendoza, and W. L. Mochán, “Second-harmonic generation from spherical particles,” Phys. Rev. B 62, 11152–11162 (2000). [CrossRef]
  14. W. L. Mochán, J. A. Maytorena, and B. S. Mendoza, “Second-harmonic generation in arrays of spherical particles,” Phys. Rev. B 68, 085318 (2003). [CrossRef]
  15. R. Bernal and J. A. Maytorena, “Second harmonic generation from centrosymmetric thin films by a focused beam with arbitrary transverse structure,” Phys. Rev. B 70, 125420 (2004). [CrossRef]
  16. Y. Jung, L. Tong, A. Tanaudommongkon, J. Cheng, and C. Yang, “In vitro and In vivo nonlinear optical imaging of silicon nanowires,” Nano Lett. 9, 2440–2444 (2009). [CrossRef] [PubMed]
  17. Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, and P. Yang, “Tunable nanowire nonlinear optical probe,” Nature 447, 1098–1102 (2007). [CrossRef] [PubMed]
  18. X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy,” Lasers Surg. Med. 39, 747–753 (2007). [CrossRef] [PubMed]
  19. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. A 253, 358–379 (1959). [CrossRef]
  20. E. Y. S. Yew and C. J. R. Sheppard, “Effects of axial field components on second harmonic generation microscopy,” Opt. Express 14, 1167–1174 (2006). [CrossRef] [PubMed]
  21. P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005). [CrossRef] [PubMed]
  22. F. X. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B 80, 233402 (2009). [CrossRef]
  23. F. X. Wang, F. J. Rodríguez, W. M. Albers, and M. Kauranen, “Enhancement of bulk-type multipolar second-harmonic generation arising from surface morphology of metals,” New J. Phys. 12, 063009 (2010). [CrossRef]
  24. S. Roke, “Nonlinear optical spectroscopy of soft matter interfaces,” Chem. Phys. Chem. 10, 1380–1388 (2009). [CrossRef] [PubMed]
  25. T. F. Heinz, “Second-order nonlinear optical effects at surfaces and interfaces,” in Nonlinear Surface Electromagnetic Phenomena, H.Ponath and G.Stegeman, eds. (Elsevier, 1991) pp. 353–416.
  26. G. B. Arfken and H. J. Weber, “Bessel functions,” in Mathematical Methods for Physicists (Academic, 2005) pp. 678–739.
  27. F. J. Rodríguez, F. X. Wang, and M. Kauranen, “Calibration of the second-order nonlinear optical susceptibility of surface and bulk of glass,” Opt. Express 16, 8704–8710 (2008). [CrossRef] [PubMed]
  28. K. S. Youngworth and T. G. Brown, “Focusing of high numerical aperture cylindrical vector beams,” Opt. Express 7, 77–87(2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited