OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 11 — Nov. 1, 2011
  • pp: 2712–2717

Plasmonic modulation and switching via combined utilization of Young interference and metal–insulator–metal waveguide coupling

Yifen Liu and Jaeyoun Kim  »View Author Affiliations

JOSA B, Vol. 28, Issue 11, pp. 2712-2717 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (872 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a new nanoscale modulation scheme based on the formation of a plasmonic Young interference pattern and its collection by an excitation field pattern-sensitive metal–insulator–metal (MIM) waveguide. Our numerical investigations reveal that such a scheme can generate sensitive and quasi-linear changes in the output power level in response to the relative phase difference between the waves in the two Young interferometer branches. Thanks to the asymmetric positioning of the collector waveguide, the response becomes most sensitive and linear when the relative phase difference is close to zero. Such a response characteristic can benefit future plasmonic systems by eliminating the need for phase prebiasing. The strong interactions between the surface plasmon polaritons inside the MIM structures are also utilized for realizing functionalities beyond modulation, such as on/off modulation contrast enhancement and all-plasmonic and logic operation.

© 2011 Optical Society of America

OCIS Codes
(230.4110) Optical devices : Modulators
(240.6680) Optics at surfaces : Surface plasmons
(240.3990) Optics at surfaces : Micro-optical devices

ToC Category:
Optics at Surfaces

Original Manuscript: July 29, 2011
Manuscript Accepted: September 21, 2011
Published: October 20, 2011

Yifen Liu and Jaeyoun Kim, "Plasmonic modulation and switching via combined utilization of Young interference and metal–insulator–metal waveguide coupling," J. Opt. Soc. Am. B 28, 2712-2717 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010). [CrossRef]
  2. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006). [CrossRef]
  3. K. F. MacDonald and N. I. Zheludev, “Active plasmonics: current status,” Laser Photon. Rev. 4, 562–567 (2010). [CrossRef]
  4. W. K. Burns, “Linearized optical modulator with fifth order correction,” J. Lightwave Technol. 13, 1724–1727(1995). [CrossRef]
  5. T. Holmgaard, Z. Chen, S. I. Bozhevolnyi, L. Markey, A. Dereux, A. V. Krasavin, and A. V. Zayats, “Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express 16, 13585–13592 (2008). [CrossRef] [PubMed]
  6. A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008). [CrossRef]
  7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006). [CrossRef] [PubMed]
  8. A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon polariton Mach–Zehnder interferometer and oscillation fringes,” Plasmonics 1, 141–145 (2006). [CrossRef]
  9. J. Gosciniak, S. I. Bozhevolnyi, T. B. Andersen, V. S. Volkov, J. Kjelstrup-Hansen, L. Markey, and A. Dereux, “Thermo-optic control of dielectric-loaded plasmonic waveguide components,” Opt. Express 18, 1207–1216 (2010). [CrossRef] [PubMed]
  10. J. Lee and J. Kim, “Numerical investigation of quasi-coplanar plasmonic waveguide-based photonic components,” Opt. Express 16, 9691–9700 (2008). [CrossRef] [PubMed]
  11. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114(2005). [CrossRef]
  12. A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express 16, 1475–1480 (2008). [CrossRef] [PubMed]
  13. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007). [CrossRef]
  14. Y. Liu, Y. Liu, and J. Kim, “Characteristics of plasmonic Bragg reflectors with insulator width modulated in sawtooth profiles,” Opt. Express 18, 11589–11598 (2010). [CrossRef] [PubMed]
  15. R. Zia and M. L. Brongersma, “Surface plasmon polariton analogue to Young’s double-slit experiment,” Nat. Nanotechnol. 2, 426–429 (2007). [CrossRef]
  16. H. Shi, X. Luo, and C. Du, “Young’s interference of double metallic nanoslit with different widths,” Opt. Express 15, 11321–11327 (2007). [CrossRef] [PubMed]
  17. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W. ’t Hooft, D. Lenstra, and E. R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett. 94, 053901 (2005). [CrossRef] [PubMed]
  18. S. Ravets, J. C. Rodier, B. E. Kim, J. P. Hugonin, L. Jacubowiez, and P. Lalanne, “Surface plasmons in the Young slit doublet experiment,” J. Opt. Soc. Am. B 26, B28–B33(2009). [CrossRef]
  19. Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642 (2004). [CrossRef]
  20. M. A. Vincenti, A. D’Orazio, M. Buncick, N. Akozbek, M. J. Bloemer, and M. Scalora, “Beam steering from resonant subwavelength slits filled with a nonlinear material,” J. Opt. Soc. Am. B 26, 301–307 (2009). [CrossRef]
  21. Y. Fu, W. Zhou, L. E. N. Lim, C. Du, H. Shi, C. T. Wang, and X. Luo, “Transmission and reflection navigated optical probe with depth-tuned surface corrugations,” Appl. Phys. B 86, 155–158 (2006). [CrossRef]
  22. Y. Zhao, S.-C. S. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, “Beam bending via plasmonic lenses,” Opt. Express 18, 23458–23465 (2010). [CrossRef] [PubMed]
  23. L. Zhao, Y. Li, J. Qi, J. Xu, and Q. Sun, “Light focusing by the unique dielectric nano-waveguide array,” Opt. Express 17, 17136–17143 (2009). [CrossRef] [PubMed]
  24. T. Xu, C. Wang, C. Du, and X. Luo, “Plasmonic beam deflector,” Opt. Express 16, 4753–4759 (2008). [CrossRef] [PubMed]
  25. C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam manipulating by metallic nano-optic lens containing nonlinear media,” Opt. Express 15, 9541–9546 (2007). [CrossRef] [PubMed]
  26. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31, 3288–3290 (2006). [CrossRef] [PubMed]
  27. Comsol Multiphysics, Comsol Inc., Burlington, Mass., USA.
  28. P. B. Johnson and R. W. Christy, “Optical-constants of noble-metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  29. J. Liu, G. Fang, H. Zhao, Y. Zhang, and S. Liu, “Surface plasmon reflector based on serial stub structure,” Opt. Express 17, 20134–20139 (2009). [CrossRef] [PubMed]
  30. J. Tao, X. G. Huang, X. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express 17, 13989–13994(2009). [CrossRef] [PubMed]
  31. A. Pannipitiya, I. D. Rukhlenko, M. Premaratne, H. T. Hattori, and G. P. Agrawal, “Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure,” Opt. Express 18, 6191–6204 (2010). [CrossRef] [PubMed]
  32. R. Soref, R. E. Peale, and W. Buchwald, “Longwave plasmonics on doped silicon and silicides,” Opt. Express 16, 6507–6514(2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited